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Dedicated to the memory of my friend Jacek Szarski

Abstract. Sets of systems of ordinary functional-differential equations with
Volterra type functionals under sets of initial values are considered. Upper and lower
bounds are constructed for the sets of all solutions. Classes of such problems are given
where these bounds are optimal. The main tool is a Lemma of Max Miiller on inequal-
ities. Also ideas from interval mathematics are used.

1. Significance and explanation. If differential equations
w(t) =flt,u®), u(0)=a

appear in Applied Mathematics there is normally not just one right-hand
side f. Instead of this a whole set {f} of right-hand sides must be considered.
This is due to many facts such as: data errors, data intervals obtained
from measurements, approximation of f by a more suitable funetion,
poor knowledge of the laws involved, etc. The same is true for the initial
“yalue” ¢ which is usually a set {a}. Hence the above initial value problem
has to be replaced by the inclusion problem

w(t) e{f{t,u(®)}, u(0)e{a}.

It is normally completely impossible to solve all the real problems
which are combined in this set of problems. The goal of the following
paper is therefore to find at least lower and upper bounds to the set of
all such solutions. This can always be done. Since these bounds are some-

times very pessimistic, classes of such problems are given where the bounds
obtained are optimal.

(1) Institut fiir Angewandte Mathematik, Universitit Freiburg, Hermann-
Herder-Str. 10, D 7800 Freiburg i.Br., West Germany.
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The main ideas of this paper are also valid in the more general case
where f does depend as a functional upon the unknown solution «.This
is written in the form f (t, u(t), u) Therefore the theory of this paper
also includes integro-differential equations and difference-differential
equations. Sets of such problems do occur for example in Economics and
in Biology.

An earlier version of this paper has been written while the author
worked as a guest during the summer of 1977 at the Mathematics Research
Center of the University of Wisconsin in Madison/Wise., USA. It first.
appeared as Technical Summary Report No. 1782 of this institution and
‘was sponsored by the U.S. Army under Contract No. DAAG29-75-C-0024.

The author got inspired to work on this field by the papers of professor
Jacek Szarski [9]-[14].

2. Introduction. In the following paper systems of functional-differen-
tial equations

(1) w(t) =f(t,u(t),u) for 0<t<T,

are considered under the initial conditions

(2) u(0) = a.

Herein % = (%), %s, .-y %)y, [ = (fiyfoy ey fn) and a = (ay, agy ..., a,}

are m-vectors. As usual 4 (t) means the value of the function » at the point ¢;
moreover %’ (1) = du(t)/dt. Opposite to this the notation 4 means that u is
regarded as an element of the class of admissible functions. Hence f(-, -, u)
is a functional on «; in what follows only special “Volterra” functionals
will be regarded.

If f is continuous then the system (1), (2) is equivalent to the system
of functional-integral equations

t
(3) w(t) = a+ [ f(s,u(s),u)ds for 0<I<T.
[}

It is the subject of the following paper to find bounding functions v (),
w(t) such that for every solution %(t) of (1), (2) or (3)
(4) vty <u(t)<w() for 0LILT.
Hence the classical theory of maximal and minimal solutions for differen-
tial equations appears as a special case of these results.

If a solution % of (1), (2) is uniquely determined then it is trivial that
(4) is satisfied for w := v := 4. It is therefore interesting to switch to

a more general problem: Let {a} be a set of initial values and let {f} be
a set of right-hand sides to (1). Then the more general initial value problem

() w'(t) e {f(t, u(t),u)) for 0<t<T,
(6) %(0) € {a}
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is considered. Herein % is called a solution of (b), (6) if there is a right-hand
side f e {f} and an initial vector a < {a} such that &’(t) = f{¢, %(¢), &) on
0 < t < T and that %(0) = a. Let {#} be the set of all solutions of (5), (6).
Again two functions »(t), w(t) are looked for such that (4) is true for any

solution % e {#}. If one writes [v, w] for the function interval from the two
bound functions » and w then this can be written as

(7) {u} < [v, w].
It is in general quite simple to find rough bounds v, w. In what follows
special emphasis is therefore given to the look for “optimal” bounds.

Here “optimality” means the following: let there exist the infimum and
the supremum of the set {#} such that

(8) v = inf{4}, w = sup{u}.

In that case one can call [v, w] the “interval hull” of {#}. It is the goal
of this paper to find classes of sets {f} and {a} such that (7) and (8) are
true.

In order to get such results a lemma of Max Miiller [5] on differential
inequalities is essential. This lemma has been published more than 50
years ago. For decades however, it remained widely unnoticed. In what
follows this lemma will be extended to the case of functional-differential
‘inequalities. This will be done by extending an old paper of the author
{Nickel [7]). See also Adams—Spreuer [1] and the papers of Szarski.

It should finally be remarked that the problem of this paper and some

of the formulations have been strongly influenced by the ideas of interval
mathemadtics.

3. Notations and assumptions. Let n eN, 0<TeR, I:=[0,T],
I,:=(0,T], a € R*. The n-vectors a, %, f are written as a = (a;, &y, -.., ay),
W = (Uy, Ugy oeeyU,), f = (f1y foy -++y fn) - Together with the kth component
u;, of the vector v also the n—1-vector ,u = (Uy, Ugy «vey Ug_1y Uy «oy Up)
is used.

Let the class 3 of the admissible functions be defined as the set of all
function vectors #: I — R", continuous on I such that the derivate u’
exists in I,.

The notation % means that % is an element of the class 3. Opposite
to this «(t), #’(t) mean the values of these functions at the point ?.

Let f be a mapping f: I,x R x 3 — R". Let the dependence of each
component f,(t, y, z) of z be that of a “Volterra” functional. Here a fune-
tional ¢(?, 2) with g: I,x 3 — R is called “Volterra”, if

g(t,v) = g(t,w) for all tel,
is true for all functions v, w € 3 which satisfy the equality v(s) = w(s)

on 0< s <t. Hence the value of g(¢,2) depends only upon “the past”
of the function 2.
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ExampPLES of Volterra functionals are

¢
g(t,2):= [ K(t,s,2(s))ds,

(9) g(t,z):= z(r-1) with 0 <7<,
. Jz(t—8) for 0<Ls<1,
(10) 9(,2) '_{a(t—s) for 0<t<s

with some function a(t)
given for —s <1< 0.

These examples show that the theory given in this paper can be applied
to: differential equations, (Volterra) integro-differential equations, dif-
ference-differential equations with retarded argument and naturally also
to combinations of these equations.

Inequalities ¥(t) < w(t) are always meant componentwise as v, (?)
< wg(t) for k¥ = 1(1)n. Inequalities of the kind v < w are meant both
componentwise and pointwise for all points in the definition set. Inclusions
€ arc defined analogously.

To a set {a} the inequality z < {a} means that z < a for all a € {a}.
Similarly the inequalities z > {a}, 2 < {a}, 2 = {a} are defined. For v < w
the interval [v(?), w(t)] is defined as the set [v(f), w(?)]:= {# € R"| ()
< z< w(t)}. Similarly [v,w]:= {ze3|v<2< w}.

In order to simplify the results the following notation will be used
for the components f, of f(¢, vy, 2): the second argument y € R* of f is
broken up in the component y, with the same index % as f, and in the
rest vector y:

o = Tty Yns ¥, 2)-

Furthermore it is suitable to have a special notation for the set of all
functions f), if the arguments lie in certain intervals. This will be denoted by

{2y Y5 121, [0, w} o= {f(2, 24, xP5 O &P € 1Y) 71, 4 € [0, w]}.

From Section 8 to the rest of this paper only functions f will be regarded
which are partially monotone. The corresponding definitions will be given
in Section 8. '

There is, however, one more notation to be introduced already here:
The Volterra functional g(f,2) = g(f, 2, ,2) is called partially strictly
monotone increasing (decreasing) with respect to the component z; if for
all ¢ e I, the following is true:

V()<< wp(s) ImO<s<t
implies
9ty vy 10) (S) g8, we 5v)  for all funetions (v, ;2), (w0, 0) €3-
See Nickel [7].
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4. Existence. The following theorem is the extension of the well
known Peano existence theorem for systems of differential equations:

THEOREM. Leét f be defined and continuous on I X R*x 3. Then (1),
(2) and (3) are equivalent. If f is bounded there exists (at least) one solution
% €3 of (1), (2). If f is not bounded then there exisis a solution of (1), (2)
at least in a largest interval 0 <t1< T, < T.

Proof. The equivalence is trivial. For the existence the fixed point
theorem of Schauder is applied to equation (3). The main ideas are exactly
the same as in the case of differential equations. They are described in
the book of Walter [15], p. 23-25.

For more results on functional-differential equations see for example
the book of Myschkis [6].

5. The lemma of Max Miiller.

LEMMA. Let the funciions v, w € 3 with v<<w satisfy the following
inequalities:

(11) 2(0) < e< w(0),
(12) ’U;c(t) < l_fk(t7 'vk(t)’ [kv(t)a kw(t)]y [’IJ, ’WJ)I,
(13)  wi(®) > {fult, wi (), Lo (), x0(D)], [0, w])} :
Jor tely, and k = 1(1)n.
Then any solution % € 3 of (1), (2) is bounded by
(14) o)< w(t)<w(t) fortel.
COROLLARIES. 1. If u € 3 is a solution of the inequalities
w(©0)<a, w)<f(t,u(t),u) in I,
then
ut)<<w(t) fortel.
2. Similarly
() > o) fortel
for any solution
% e 3 of the inequalities u(0) > a,
w (@) >flt,u(®),u) in I,.

3. If all £, are strictly monotone (increasing or decreasing) with respect
to (at least) one of the components of u, it then suffices to have the > - and
<-signs in (12) and (13) instead of the > - and <-signs.

Remarks. 1. This lemma has been formulated and proven by

Max Miiller [56] as Theorem § on the pages 13 to 156 for the special case
where f does not depend upon «. See W. Walter [15], p. 93-94.
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2. The original notation of M. Miiller was very inconvenient. It has
here been replaced by the interval notation.

3. Kindly note that there are no assumptions to be made with respect
to be function f, such as continuity, monotonicity, etec.

Proof. The original proof of M. Miiller carries right over to this case.

6. Example. In the following example # = 2. The functional (9)
is used for T = 1/2 together with the other functional

¢
f (3 (8) + 3 (3)) ds.
Let '
Filly w(t), u) s= —2u3(8) + 0y () /(1 + %) + (0, (2/2) + 0, (£/2)) /2,
falt, w(?), u) 1= 1 —sin (7w, (1) /2) + 2u, (2) (1 — 20, (1)) +

t
+(1/20) [ (W (s)+u3(9))ds,

0<ay,a,<1.

Define v; = v3:= 0, w; = w,:= 1 for ¢t > 0. Then one easily verifies
for t > 0:

fl(t7 0:(8), [04(2), wa(?)], [v1, w,], [V2, ’wz])
= [0,1]/(1-+#)+[0,1]1>0
fl(tr w1 (1), [9:2(2), w2 (1)1, [v1, w1], [V, ’wz])
= —2+4[0,1]/2+#)+[0,1]1<0,
fz(t Vg t) [21(2), w4 (?)], --') = [0, 1]+[0,1]>0
fa(t wy(t), [v2(2), w1(2)], ) =[0,1]—-24[0,1]1<0

Since f, and f, are strictly monotone increasing with respect to both com-
ponents %, and u,, the third corollary to the lemma can be used. This
gives the a priori estimate 0 < #%,(t), %,(t) < 1 for ¢ > 0 for any solution .
By the existence theorem of Chapter 4 there exists at least one solution
% in a certain interval 0 <i{< T, < T. Because of the bounds obtained
it does exist for all ¢ > 0. It is furthermore uniquely determined because
of the third corollary of the Lemma. Hence there is exactly one solution
for all ¢ > 0 and to all initial values 0 < al, a; < 1 and it satisfies the in-
equalities 0 < %, ¥, < 1.

7. Uniqueness and error bounds. For ordinary differential equations
all uniqueness theorems can be derived from the Lemma of M. Miiller.
In his original paper he did use the lemma exactly for that purpose. Simi-
larly probably all known a posteriori bounds can be proven with its help.
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Therefore a very large number of such theorems can immediately be
proven also for the case of functional-differential equations. It is possible
to translate all the results from the books of J. Szarski [8] and of W. Walter
{15] to these extended systems of equations. Some first results have
already been given in the old paper by K. Nickel [7]. It is, however, not
the purpose of this paper to publish such theorems.

8. Monotonicity conditions.

DEFINITION (unconditionally partially isotone/antitone/monotone).
Let g(xy, 2, ..., @,) be a mapping g: D — R with D = R™. Again the
notation g(z,, ..., %,) = ¢(®, ;@) is used. The function g is called uncond:-
tionally partially isotone or antitone on D with respect to the variable
x;, if

9 (Yxs 1) = (2, ,®)  TOr y, = x; or Y, < 7

and for all (x,, %), (¥, ,&) € D. A function which is either unconditionally
partially isotone or unc. part. antitone is called unconditionally partially
monotone.

Kindly note that the function g¢(z, x,) := @, @, is unconditionally
partially monotone with respect to z;, and «, on D := [0, o0) X [0, o0),
but not on D := R2,

DEFINITION (monotonicity class It). Let the class M consist on all
functions f(¢, #, y) for which the following is true: Each function f(¢, 2,
4%, ¥y) is unconditionally partially monotone on I,x Rx R"'x 3 with

respect to any component of ,2 and y, but not necessarily with respect
to z.

If f €M then it is convenient to write

Tty Tpy 125 ) = Fr(ty @y 12 T’ s ¥t yl).

This clearly means that the vectors ,# and y are divided in the two sets
of components for which f, is isotone (1) and antitone ().

Let f e M. Then in the lemma of M. Miiller the (rather inconvenient)
inequalities of sets can be replaced by real inequalities (which are much
simpler to handle). In this case the lemma reduces to the

. SPECIAL CASE OF THE LEMMA. Let f € IM. Assume that (11) is true for
Junctions v, w e 3 with o< w and that Sfurthermore

0 (8) < e[, v (1), 40(0) 1, 0 (1) {5 01, wl),
w,:(t)>f,,(t,wk )y k0 (t) 1, (), wt, ),
for tel, and k = 1(1)n.

Then any solution @ €3 of (1), (2) is bounded by (14); furthermore Corol-
laries 1 to 3 hold.
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The proof comes immediately from the Lemma together with the
definition of the class 9.

9. Construction of bounds. In what follows the special case of the
Lemma will be used to construct bound functions » and w. The above
problem (1), (2), (4) will be replaced by a more general since no additional
difficulties are generated by the extension:

The initial data e in the initial conditions (2) are to be replaced by a set
{a}. For simplicity assume {a} < [a,d] with two vectors a,d € R" and
a <& such that

(15) a,de{a} < [a,a].

Hence the initial conditions (2) are to be replaced by (6). Let {#} be the
set of all solutions of (1) under the set of all initial conditions (6). Wanted
are bounds v, w such that (7) is true.

Assume that f is continuous and bounded on I X R" x 3. The following
sequence of problems for » € N is considered:

() = felts v (8) 0 () 15 0 () §5 0%, wl) =1/,

16
1) wy (1) = fk(ta wye(2), g0 (t) 1, L0 (1) |, w1, 'DwL)'l‘l/”’

for tel, and k = 1(1)n,
a7 v(0) =a—1fy, w(0) =a-+1/f».

By the existence theorem of Section 4 (with n replaced by 2%) there exists
for every » € N at least one solution v, w € 3 of the coupled system (16),
(17). An arbitrary solution is picked up and called (v", w*). Then

’Dv< ,uv+1< "l\l/< ,wv+l< ,w'r
for all » € N and for any solution % € 3 of (1), (2). This follows by the special
case of the Lemma and by the definition of the right-hand sides in (16)
and in (17). Hence the sequences {v"} and {w’} are monotone and bounded.
As sequences of measurable functions they have measurable limit functions
v(t) : = sup {o’(?)} and w(!) := inf{w’(¢)}. Furthermore
(18) V<UL W,

One can show as usual that these sequences are uniformly convergent
on I and that v, w € 3 (see W. Walter [15], p. 68). Furthermore the pair
(v, w) satisfies the following functional-differential system in I, consisting
of 2n equations

v (t) = fk(t’_gk(t)’ 2@ 1, @) |, 21, B),

(19) Bo(t) = iyt Be(0)s B(0) 1, 50(0) §» B, 0})
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under the 27 initial conditions
(20) 20)=a @(0) =a.

If 4 e 3 is a solution of (1), (2), then the pair (#, %) is also a solution of
(19), (2). In general the reverse is however, not true, i.e. the functions
9, w are in general no solutions of (1), (6). Hence they are not minimal
or maximal solutions to (1), (6) in the usual sense (see however, Section 12).
In what follows the interval [v, @] will be called maximal interval solution-
of (1), (6).

The reason for this notation comes from the following: Define the
interval operator #[v,w] = (¥,, Fy, ..., F,) by its kth component as
follows:

¢
Fy[o, w(t):= o+ [ fuls; (), 10(5) 1,10 (8) 4, 91, w) s,

¢
6h+ffk(s9wk(s)’ kw(s)Tyk'”(s)\L:wTﬂ”Jr)ds]-

Any solution % of (1), (6) satisties
weF[u,ul.

Moreover, the interval [v, %] is a fixed interval of the operator F by (19)
and (20). By construction [v, @] is the smallest fixed interval of F for which
(18) is true. If @ = @ = ¢ and if maximal and minimal solutions of (1),
(2) exist then they are equal to » and w. .

This idea consists therefore in replacing the usual ordering relation
< (componentwise with respect to ¥ and pointwise with respect to t) by

the inclusion < as a new ordering relation (also componentwise and.
pointwise).

10. Bounds for the solutions of sets of functional-differential equa-
tions. Equations (1), (2) are now being replaced by inclusions (5), (6).

THEOREM. Let (15) be satisfied by the set of initial values {a}. Assume
that there ewist two right-hand sides f,fe{f} with f<f such that for all.
solutions 4 € 3 of (5), (6) i}

Kty u(e), w), f(t, w(t), u) € {£(t, u(2), u)]

< [f(t, w(t), %), F(t, u(t), %)] in I,.

Assume furthermore thai the two functions f, f € M are continuous and bounded.
on I x R" x 3. Construct the mazimal interval solutions to «, f and a, f to the
problem (1), (2) and call them [v,w] and [v, w]. Then v < @ and for the set
{w} of all solutions « € 3 of (B), (6) the inclusion
(21) {u} < [v, W]
8 true.
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Remarks. 1. There is nothing assumed for one of the right-hand
sides f e {f} if f # f, [, only the existence of that function. If f for example
is not continuous, no solution % of (1), (2) may exist. Kindly note that
‘the theorem deals only with existing solutions.

2. In order to find the two bounds 9, @ for all (in general oo many)
solutions of (5), (6) one has to determine the maximal interval solutions of
two coupled systems with 2n equations each. The functions 7 and w are
a “side effect” of this procedure, they are not needed for the inclusion
(21). They do have however, a meaning as “inner” bounds to {#} in the
sense of interval mathematics.

Proof. Let % be a solution of (5), (6). Then
a(t) = flt, w(0), %) <flt, (), %) in I,.
Then 4 < % in I by Corollary 1 of the lemma and by the construction
of (v, w). The inequality % > v is shown similarly which finishes the proof.

11. Two examples. 1. Let # =1, a =0,
{22) Flty (@), u) :=2(V [u(@)| +u(z-1)

and
{fi:={flo<<1}.

The functional used is #(r-t) by (9). I do not know if the problem (1), (2)
with f by (22) can explicitly be solved for = # 0, 1.

Since f is isotone in u, the two inequalities (12) and (13) of the Lemma
are decoupled. By putting v(t) := —e with 0 < ¢ << 1 one gets »(0) = —e¢
<< 0 = aand

0 = v'(t) < 2(VIo(t)| +v(z-t)) = 2Ve(l —Ve).

Hence by the Lemma #%(t) > —e¢ for any solution % € 3 of (1), (2). For
£ —>0 one gets %(¢) > 0 and therefore by (22) there is also #’(f) > 0 for
any solution . Hence 0 < #%(z+t) < %(t) for any solution, therefore one
can define

fltyu@®,w):=0, Flt,u(t),u):=2{/|lu@)+u@).

‘The maximal interval solution is found easily as 2:= 0, ¥W:= (¢t —1)%
hence ‘

(23) u(t)e[0, (¢ —a)’] fort>0

for all solutions % of (1), (2) with (22).

If one now changes the functional (9) in (22) to (10) one gets the
functional

2(Viu(®) +u(t—s)) for

) 0
{24) fltyu@,u):=} "~
2V [u(t)| for 0<¢



Bounds for the set of solulions 251

where 0 < s << co. With this right-hand side (24) one gets a whole set of
difference-differential equations with retarded argument. The same ideas

as above give exacily the same bound functions v and w. Hence also in
this case (23) is true.

The same can be said for the third different right-hand side

¢
(25) Fles wi®), w) i =2 (Viv@I+ ([ w(s)ds)")

with 1 < p < oo. The functional in this case is the Volterra p-norm with
the sup norm for p = oo.

Since in all three cases the bounds v, % are solutions itself to u’ = f,
4’ = f one gets in addition the optimality condition

{(26) v, W e {u} < [v, B].

This result is highly surprising. The three problems with the dif-
ferent right-hand sides (23), (24), and (25) most certainly have complete-
ly different solutions and therefore also different solution sets. In spite

of this fact all three sets have the same bounds and furthermore these
bounds are optimal.

This example shows also that it is very often simpler to look for bounds
9, w such that (26) is true than to try to solve the equations.

2. Let n = 2, the given system is
Uy = Uy, % (0) = @y, Up= —uy, U(0) = a,.
The uniquely determined solution is
Uy(t) = a,co8t+ay8int, U,(t) = —a;8int-+ aycost.

Let a, €[0,1], a, € [0,1]. Then by rules of interval arithmetic (see R.E.
Moore [4])

%4(t) € [0, 1]cost+ [0, 1]sint,
%y(t) e [—1, 0]sint 4 [0, 1]cost.

The set of solutions is hatehed in Figure 1. In the picture also the “main”
solution for a; = a, = 1/2 is shown. The extended system (19)reads here as

v, = 0y, 2,(0) = 0,
v = —W, 1,(0)=0,
‘T’; = ?7’2’ w,(0) =1,

W= —v, @0 =1.
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The solution to this system is unique, hence the maximal interval solution
20)(t) = —é +sint--cost,
20,(t) = —é*+cost —sint,
2w, (t) = é-sint+cost,
2%, (t) = ¢+ cost+sint.

Hence %he functions », w “back away” from the “main” solution (see
Figure 1) as fast as ¢'/2 to below and to above.

u

2

L _
R %
N 4

Y
a

=
_

Fig. 1

For ¢ = 2n one sees {u;(2w)}, {¥4(27)} < [0, 1]. But %, (2n) —v,(2w)
= ¢™ = 535.4 ... for k = 1, 2. The real set of solutions {«} is therefore
surpassed at t = 2= by [v, W] by a factor of more than 500 and this grows
rapidly worse for larger values of ¢!!!
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This example was first discussed by R. E. Moore [4] by using
geometrical reasoning. N

12. Optimal bounds for the set of solutions: maximal and minimal
solutions, By Section 10 one sees that it is enough to restrict the survey
to the solution of two real functional differential equations if one wishes
to bound the solutions of sets of such equations. Hence the following opti-
mality considerations are given only for systems of the type (1). Since it
is no aggravation the inital inclusion (6) has, however, been used instead
of the initial condition (2). It is always assumed that (15) is true.

As is shown by the second example of Section 10 the maximal interval
solution [0, @] gives in general not optimal bounds to the set of solutions
{u}. In this and in the next section classes of problems will be given such
that there is optimality either in the sense of (26) or at least of (8).

Let fe9. Assume furthermore that all functions f; (¢, x,, &, y) are
unconditionally partially isotone with respect to any of the components
of ,z and y. This is called “quasimonotone increasing” by W. Walter [15]
in the case of differential equations. With this condition the equations
for » and w in (16) and (19) are decoupled from each other. Therefore the
functions v and @ are even solutions of (1). In the case of differential
equations these are the well known minimal and maximal solutions (see
W. Walter [15], p. 95). Hence (26) is true which implies (8), therefore
the bounds v and % are optimal.

A simple example for this case was given in Section 11.1. Another
example for n = 2 is the system of differential equations

u; = 2V]ul,  %,(0) =0,
uy = +2V[uyl, y(0) = 0.
One finds easily v,(f) = v,(t) = 0, W, () = W,(t) = 2.

13. Further cases with optimal bounds. If one changes in system (27)
the sign in the second equation one gets

(27)

w, = 2V uy, %, (0) = 0,
Uy = —2Vuy|, uy(0) = 0.

Now the right-hand sides are not anymore “quasimonotone increasing”.
The set of all solutions can be described quite easily, one finds {u,(?)}
< [0, 2], {u,(t)} = [—1?, 0]. The maximal interval solution of (19), (20)
produces the bounds

Ql(t) = O, yz(t) = _tz, wl(t) = t2, w2:= O.

They are again optimal bounds. Opposite to the results of Section 12 the
functions v ans @ are not anymore solutions of (1) (but certainly of (19)).
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By inspection one sees however that the “crossed” couples (v,, %,)
and (@,, v,) each are a solution to (1). This is responsible for the optimality.
Because if v and % are at least componentwise solutions of (1), then there
exist no smaller intervals [v, w] € [v, w] such that (4) is valid. Hence in
this case (8) is true which means optimality.

The classes of problems (1), (6) considered in this section are extensions
of this example. In the case of pure differential equations they have
already been discussed by Burton—-Whyburn [2] — with somewhat dif-
ferent notations.

DEFINITION (monotonicity matrices). Let f et
Define for + = 1(1)n

a;:=1,

0 if f; does not depend upon z,,

a,:=1+1 if f; depends isotone upon z,,
—1 if f; depends antitone upon z,

for ¢ £k = 1(1)n,
0 if f; does not depend upon ¥,,
by:=4{+1 if f; depends isotone upon y,,
—1 if f; depends antitone upon y,

for £ =1(1)n.
The matrices 4 = (a;,) and B = (b;,) are called the monotonicity mairices
to f.
DEFINITION (monotonicity condition (M)). Let f e IN.
Assume the existence of associate(!) matrices 4’ = (a;;), B' = (b
to the monotonicity matrices A and B such that for all i,k = 1(1)n

a;ke{'!'l: —1}, b;ke{_l_li —1},
a::-k St aik fOI‘ a,‘-k :,é 0,

(28) bix = by, for by # 0,
az"k = b;k’

’

’ /
aik = alli 'allk .

Then f is said to satisfy condition (M).
Remark. By (28) one sees immediately

ay = ay-ay for al I =1(1)n.

" (1) These need not be uniquely determined.
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THEOREM. Assume (15). Let feIN be continuous and bounded on
I X R"Xx 3. Assume that f satisfies condition (M). Let [v, w] be the maximal
interval solution to (1), (6). _

Then [v, W] is even the interval hull of the set of all solutions {i} of
(1), (6), i.e. (8) is true.

Proof. By construction of [v, @] inclusion (18) is true. Define the
two function vectors P = (py, By, .-y D) = P(t), § = (€1 Doy ++e) Ga)
= q(t) by

' "l'gk for a;;, = +1,
Pri=1_
-1,

w, for ay, = +1,

w, for ay,

4 =

v, for aj, = —1.

Certainly p,(0) € {a} and ¢,(0) € {a}. Mofeover, the veectors p and ¢ are
by construction and by (28) both solution of (1). Hence v and % are com-
ponentwise composed of solutions of the problem (1), (20). Hence (8) is
true.

ExAMPLES. 1. The monotonicity matrices A and B to the system

(28) are
1 0 0 0
A=(—1 0)' B=(0 0)'

Hence a possible choice for A’, B’ is

y .| 1 1
wemen( 27

and with this the function f of (28) satisfies condition (M). )

2. In the cases » = 2 and » = 3 the following matrices A’ = B’
are all such matrices which guarantee condition (M):

b2 (47

111 1 1 -1 1 -1 1 1 —1 —1
11 1], 1 1 -1|, (-1 1 -], (-1 1 1.
111 —1 -1 1 1 -1 1 -1 1 1

Remark. In the literature for systems of differential equations
nearly always the case of “quasimonotone increasing” right-hand sides
is considered if optimal bounds are looked for. In this case minimal and
maximal solutions do exist to the problem (1), (6). By introducing the
maximal interval sclution and the class 9t one finds a much larger number
— namely 2"~! — of favorable cases where the set of solutions of (1), (6)
can be optimally bounded in a constructive manner. Moreover, not only
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differential equations but also systems of functional-differential equations
can now be treated.

14. Constructing the interval hull. Consider the system of Moore
[4] in Section 11.2. In this case the monotonicity matrix reads

11
A=(53)

i.e. the function f does certainly not satisfy the monotonicity condition (M).
By Figure 1 and by the results of Section 11.2 the maximal interval sol-
ution from (19) and (20) does not give the interval hull of the set of all
solutions. This does, however, not mean that this interval hull cannot be
computed quite easily. It says only that the special method of Section 9
does not lead to optimality in this case.

In what follows a new and nearly trivial method will be given which
produces always the interval hull to the set of all solutions of (1), (6),
provided that the systems (1) are linear. There is no other restriction.
The result is therefore true also if f is not in the monotonicity class IR.
This result in the case of pure differential equations has been found inde-
pendently of the author by R. Lohner/Karlsruhe, Germany, see Lohner—
Adams [3].

THEOREM. Let the right-hand side f in (1) be continuous and linear.
Let the set {a} of the initial values in (6) be spanned by m points a', a?, ...
«e.y @™ € {a}. Let the uniquely determined solutions of (1) under the m initial
conditions

(29 w(0) =d* for k =1(1)m

be denoted by w*. Then the set {u} of solutions of (1), (6) is spanned by {ul, u?, ...

ery U™}, -
Proof. Each problem (1), (2) has exactly one solution. Let a = 3 ¢, a"

k=1

m
with ) ¢, = 1 and ¢; > 0. Because of the linearity of f the function #:
k=1

m

:= )’ ¢,u* is then the uniquely determined solution of (1), (2). This means
k=1

that the. space:of all initial-comditions is transformed affine to the new
space fog.sach-t:> 0'by the seldtions of (1), (2).

COROLLARY. Let f be continuous and linear and assume (15). Let the
m := 2" corners of the box [a, @] be denoted by o* for k = 1(1)2*. Call u* the
solutions of (1), (2'). Define '

v(t):= Min «%(t), w(t):= Min %*().
k=1(1)ym k=1(l)m

Clearly v, w e C(I).

Then (4) and (8) are true, i.e. the interval [v, w] is the interval hull of
the set {u} of all solutions of (1), (6).
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Remarks. 1. The computing effort of this new method is con-

siderably larger compared with that of the previous method. In Section
9 only one 2n-system (19), (20) has to be solved. Here 2™ solutions of
a n-system have to be computed.

2. By looking at Figure 1 one sees that during the construction of v

and w the minimal or maximal value is attained for different functions
#* if t varies. Hence the limiting functions » and w are indeed continuous
but in general not differentiable.

[4]
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