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Non-negative continuous solutions
of a functional inequality

by MAREK KuczMA (Katowice)

Abstract. The asymptotic behaviour for z — 0+ 0 of the non-negative contin-
uous solutions ¢ of the functional inequality (1) is studied under c¢onditions (i)—(v)
below, where G,, and A are given by (3) and (4), respectively. Some new results are
derived concerning the existence of a (unique) continuous solution of the associated
functional equation (2) and its asymptotic behaviour at the origin.

1. In the present paper we shall be concerned with the non-negative
continuous solutions ¢ of the functional inequality in a single variable

(1) @ () z)p[f(2)]+h(2)

in an interval I = [0, a) or [0, a], 0 < a < - co. We put also I* = I\{0}.

Continuous solutions of functional inequalities in a single variable
have recently been studiecd by D. Brydak [1], but from a different point
of view. Also, Brydak did not assume the non-negativity of the solutions.

Problems concerning non-negative solutions may arise when we
obtain an estimation of the absolute value of a function. Then ¢ in (1)
can be interpreted as the absolute value of another function, and we may
want to gain from (1) some informations about the behaviour of ¢ near
zero (which will be assumed as the fixed point of the function f). Thus
our main concern in this paper will be the asymptotic behaviour of the
non-negative continuous solutions ¢ of (1) for x — 0+ 0.

In this context it will be natural to assume that also the functions g, b
appearing in (1) are continuous and non-negative. All the asymptotic
symbols occurring in the present paper refer to x — 0-+0.

We shall deal also with the associated functional equation

(2) ¢(®) = g@)e[f(@)]+h(z

The theory of continuous solutions of equation (2) has been developed
in [3] (cf. also [4], Chapter II). The number and properties of continuous



74 M. Kuezma

solutions of (2) depend heavily on the behaviour of the sequence

n—1
(3) Guo) =[] 9lfi@], n=1,2,..; G(a) =1.
i=0
Here f* denotes the i-th iterate of f. In the sequel also the function
h(x)
4 Al = ———
(4) (@) 1 g@)

will play an important role.
We shall make the following assumptions about the given functions
frgsh:
(i) f is continuous in I and we have 0 < f(z) < x in I*.
(ii) g is continuous in I and we have 0 < g(x) < 1 in I*.
(iii) h is continuous and mnon-negative in I.
(iv) lim G,(x) = 0 for z eI*.

n—>o0
(v) A(x) = o(1).
Other possible assumptions will be specified at :every instance. In par-
ticular, we shall often assume that function (4) is monotonic in I*.
Let us note the following simple facts (cf., e.g., [4], Theorems 0.4
and 2.6).

LEMMA 1. Under condition (i), for every x eI* the sequence f™(x)
decreases 1o zero.

LeMMA 2. Under conditions (i)-(iv), equation (2) may have at most
one continuous solution in I.

The solution spoken of in Lemma 2 exists only under further assump-
tions about the given functions f, g, 2. On the other hand, for inequality (1)
we have neither the problem of existence, nor of uniqueness of non-neg-
ative continuous solutions. In fact, let ¢ be an arbitrary continuous
function in I fulfilling the condition

O0<gp@)<h(x) foraxzel.
Then, provided g is non-negative,

¢(2) < h(@) < h(@) +g (@) [f(@)],

i.e., p satisfies (1). Thus we have always the existence and never (except
when %2 = 0) the uniqueness.

2. The simplest asymptotic property of non-negative continuous
solutions of (1) is described by the following

THEOREM 1. Let conditions (i)—(v) be fulfilled. If a continuous function
@ = 0 satisfies inequality (1) in I, then

(5) p(x) = o0(1).
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Proof. Write ¢ = ¢(0) = lim ¢(x) and suppose that ¢ > 0. Then
we have o->0+0 :

(6) O<ce,<gp@<e . for »e(0,9),

with suitable ¢,, ¢, and é > 0. Take an x € (0, ¢). In virtue of Lemma 1
f*(z) e(0,9) for n =0,1,2,... Inequality (1) together with (6) yield

?(@) (o) )
S S 1 1’ .
ol = 1T g <A
Hence
n—1 1- -1
%— q,"’[g,{ﬂ \]] gIf @+ IF @), n=1,2,...

We may assume that § is so small that (cf. (v))

h(@) <re,(1—g(x)) for x e (0, d),
where 0 < 7 < 1. Thus

glf @]+ e R fi(@)] < gLfi(@)]+7r (1 —g[fi(@)])
=1—1—7){1—g[fi(=)]),

and
g 17 , ;
e < | [ - -ni-gtri@I),

=0

or else, letting n — oo,

(7) <cH( 1—r)(1—g[f (@)])).

=0
Condition (iv) implies the divergence of the series Y (1—g[f*(2)]), and
hence also of the series (1—7)3Y (1—g[f'(#)]) in I*. Consequently the
right-hand side of (7) is zero, which contradicts relation (6). Consequently (5)
must hold true.

Theorem 1 will not longer be true if we drop assumption (v). In partic-
ular, if A(z)>¢> 0 in I*, then ¢(#) = ¢ is 2 non-negative continuous
solution of (1) in I,

For a given constant ¢ write h*(w; ¢) = h(®)—c(L—g(x)).

THEOREM 2. Let conditions (i)—(iv) be fulfilled. If there exists a constant ¢,
such that B*(z;¢)>=0 and h*(w;c,) = o(L—g(w)), then for every con-
tinuous solution ¢ of inequality (1) in I we have

(8) ?(0) < 6.
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Proof. Suppose that a continuous function ¢ satisfies inequality (1)
in I and we have ¢(0) > ¢,. Then there exists a é > 0, 4 € I, such that
(%) > ¢, in [0, 4), and thus the function p(r) = ¢(x) —¢, is a continuous
and positive solution of the inequality -

(9) p(2) < g(@)p [f(@)]+h*(®; ¢)

in [0, §). We may apply Theorem 1 to inequality (9) in [0, d), and we get
y(0) = 0, a contradiction. Thus (8) must hold.

We may obtain more informations about the behaviour of ¢ at zero
under further conditions.

THEOREM 3. Let conditions (i)—(iv) be fulfilled and suppose that equa-
tion (2) has a continuous solution ¢, in I. If ¢ is a continuous solution of
inequality (1) in I, then

(10) p@) <go(®) for xel.

Proof. By induction we get from (1) and (2)

9(@) < C.@PLf" @]+ D Gi(2)p[f (2)]

and

n—1
Po(@) = G (@ @[ (@)]+ Y Gi(@) g [fi(@)],
=0
respectively. Letting n — oo we obtain hence in view of (iv) ¢(x) < ¢4(2)
for ¢ € I*. Relation (10) now follows by the continuity of ¢ and ¢, at = 0.
Results similar to Theorems 2 and 3 above are also found in [1].
COROLLARY. Under conditions of Theorem 3, if @ is a continuous non-
negative solution of inequality (1) in I, then

(11) @(w) = O(go()).

In particular, if ¢,(x) = o(1) (which is certainly the case if (v) is
fulfilled, since g, is a particular solution of (1)), then relation (11) gives
us more information ahout the asymptotic behaviour of ¢ at zero, than
relation (5).

In the next section we shall deduce the existence of ¢, from other
conditions.

3. The following estimation turns out useful.

THEOREM 4. Let conditions (i)—(v) be fulfilled and suppose that the
Junction A is monotonic in I*. If a continuous function ¢ > 0 salisfies
inequality (1) in I, then

(12) p(@)< A®) for zel”.



Solutions of a funclional inequality 77

Proof. Suppose that we have
(13) @ (o) > A ()
for an z, € I*, and put x, = f"(x,). We shall show that

(14) p(®,) > A(w,), 7":07172;“';
and
(15) ‘P(xn+1)>q)(wn)1 n=0,1,2,...

First observe that the monotonicity assumption about A, condition
(v), and Lemma 1 imply that

(16) A@,, )< A®,), n=0,1,2,...

For n = 0 relation (14) reduces to (13). Now assume that (14) holds for
an n > 0. Then we have by (1), (14) and (4)

q’(w1z) - h(‘,‘vn) _

‘p(mn+l) —‘P(-'Dn) - 'p[f(wn)] _(p(mn) = __g(mn) q’(mn)
— QD((D”) ‘1 - g(xn)) - h(mn) > 0’
()

i.e., (15) holds. Relations (14), (15) and (16) yicld now
P (T 11) > @(@,) > A(3,) = A(@41),s

i.e., (14) for n+1. Induction completes the proof of (14) and (15). But
relation (15), in view of Lemma 1, contradicts Theorem 1. Thus we must
have (12).

THEOREM 5. Let conditions (i)—(v) be fulfilled and suppose that the
function A is monotonic in I*. Then equation (2) has in I a unigque con-
tinuous solution @,. This solution 1s given by the formula

(17) po(@) = DG, (@R[ (@)],

and fulfils the imequality
(18) h(z) < @p(0) < A(w) for mel”.

Proof. Write
k-1

7:(@) = Y G (@) R (@)].

=0

We have by (3) |
Gn.+1(w) =g((1;)G,,,[f(:1;)], " =0)1!27""7
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whence
k-1
1(2) + 9@ [f(@)] = h(@)+ Y g(@)G, [f(@)] b+ ()]
k
= h@)+ Y G, (@)h ()],
i.e.,
(19) (@) + 9 (#) @ [F(#)] = pri1(@)-

Since ¢, (®) > @i (@), it follows from (19) that ¢, is a continuous and non-
negative solution of inequality (1) in I, whence by Theorem 4

o) < A(w) in I".

This implies that series (17) converges in I* and its sum g, fulfils inequal-
ities (18). The convergence of series (17) at x# = 0 is trivial, since condi-
tion (v) implies that 2(0) = 0.

It follows by (19) that ¢, satisfies equation (2). Let w(x) denote the
oscillation of ¢, at . We get by (2)

w(x) *
olf(x)] =——> w(®) foraxzel
g(x) ’
since g < 1. If we had w(w,) > 0 for an &, € I*, then we would get
(20) w(x,) = w(®), =n=0,1,2,..,
where », = f"(2,). On the other hand, we have by (18) lim w(®) =0,

2040
which is incompatible with (20). Consequently ¢, is continuous in I*.

The continuity of ¢, at © = 0 follows from (18), and the uniqueness of g,
from Lemma 2.

4. Condition (12) may be written (for non-negative ¢) as
(21) g(@) = O(A(w)).

It follows from (18) that estimation (21) is less sharp than (11). However,
since formula (4) is muech simpler than (17), condition (21) may be much
more convenient to use. Moreover, it may still yield quite good results.
This may be seen, e.g., from the following example. Consider the equa-
tion (1)

(22) p@) = (1—2)p(®—2%) + 23+ 240* —20° —a® + "

(1) Equations (22), (23) and (28) are considered in an interval I = [0, a] < [0, 1),
where a > 0 is so emall that the function A is monotonic in I.
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with the continuous solution ¢,(2) = 4% Here A (r) =2+ 2% —2a* —a° -+

+ 2%, so it differs from g¢,(z) only in the terms of orders higher than two.
Similarly, in the case of the equation

1 x x?logr —zx
23 = |1
(23) p(@) ( + logw)(p (m+1)+(m—|—1)logm

(where at ©# = 0 the functions are assigned their limit values) we have
the solution ¢,(x) = x, whereas

x—zlogx
rz+1

Again A (z) differs from ¢,(z) only in the terms of higher orders.
Moreover, it may be generally proved that in many cases the esti-
mation (21) is almost as good as (11). Namely, we have the following

THEOREM 6. Let conditions (i)—(v) be fulfilled and assume that the
function A is increasing and the function g is decreasing in I*. Assume,
moreover, that h > 0 I* and

A(z) = = g —x?loge —z® + zilogxw + a3 —

(24) 1-p(x) =o(1l—g(w),
where

g [RIF®]
(25) P =

Then the functions A and ¢, (given by (4) and (17), respectively) are asymp-
totically equal, i.e.

lim %o(®)
(26) a:—i(?-:o A‘T(a;)l
Proof. If # € I*, then, by Lemma 1, f*(z) € (0, #]fori =0,1,2, ...,

and we have by (25)

R @] T LY @)

bl B Bl LN ",

ER U BT R

Also, by (3),

n—1
G,(2) = [[ 9Lf @)1= L9 ()T

Hence, in view of (17) and (4), we have for » € I*

#0(@) AL ()]
e oy =B 101 Y a0 o)

n=0

1—
> [1—y(w)12 [y@p @I = ﬂ%%)m'
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Condition (24) implies that lim [1—g(x)]/[1—p(x)g(x)] = 1. Relation
7040

(26) follows now from (27) and (18).
On the other hand, in the case of the equation

1 1 T 1
(28) o(z) = (1 + 1ogm)"” (?w) +?(1 +..@0_)

we have @)(z) =2 and A(x) = — jz(logr+1) = O(rlogx). Thus in
this case estimation (11) is essentially better than (21). This is again a par-
ticular case of 4 more general situation.

THEOREM 7. Let conditions (i)—(v) be fulfilled and assume that the

function A is monotonic in I*, and g(0) = 1. Assume, moreover, that b > 0
in I* and

1S (@)]
29 i <1
=9) lim sup = )

Then the functions A and ¢, (given by (4) and (17), respectively) fulfil
the condition

(30) po(2) = o(A(a)).
Proof. In virtue of (29) we can find a 6 € I* and a p < 1 such that

hf(x)]
h(x)

<p in (0, 4).

Hence we get in view of (17) and (4), for = € (0, 9),

o) _ Ao =)
T ]ZG,L( n- y(wlzp

n=0

which proves (30).

Remark. Since the values of a function far apart from zero are irrele-
vant for its asymptotic behaviour at zero, and since a continuous solution
of equation (2) in a necighbourhood of zero may be uniquely extended
onto I (cf. [4], Theorem 3.2), the results of the present paper remain
valid if the function A (and, in Theorem 6, the function g¢) is assumed
monotonic only in a neighbourhood of the origin, except that inequali-
ties (10), (12) and (18) need not hold in the whole I resp. I¥, but only
in a neighbourhood of the origin. '

5. As an illustration of the strength of the results obtained we shall

prove two theorems which improve on a result of B. Choczewski ([2],
Theorem 4.7).
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THEOREM 8. Suppose that the functions f, g, h are continuous in I,
0<f(x)y<zinl® and g # 0 in I. Further assume that

f@) =z—a""u(@), g@) =1-a(@), k) =cv(@)a*+a’w(z),

where the functions w and w are bounded, v, = lim info(z) > 0, ¢ i3 a real
r=>0-L+0

constant, and k, m, q are positive constants such that k<m<gq, k<gq.
Then equation (2) has in I a unique continuous solution ¢,. This solution
Sulfils the condition

(31) Po(x) = ¢+ 0 ("),

Proof. Write h*(z;¢) = h(x)—c(l —g(x)) = 2%w(x), and consider
the series

(32) 7 @) = Y @, (@) h*[f*(@); ¢
n=0
Put w, = lim sup |w(x)|. Given & 0 <e<v,, we may find a 6> 0
z—>040

such that in the interval [0, 6] = I we have
0<g(@)<l—ova®, |b"(@,0) <war,

where v, = v,—&, w; = w,+ ¢. Thus the terms of series (32) are majori-
zed in [0, 6] by those of the series

(33) @) = Y G, @h(f"(@)],

n—1

where G, (x) — [] §f(x)], §(x) = 1 —v, 2%, h(x) = w,2% Series (33) is as-

i=0

sociated with the functional equation

§(r) = §(@)pLf(@)]+h(z

The functions f, §, b clearly fulfil conditions (i)~(iii). The function

fulfils condition (v) and is increasing in [0, 6]. We shall verify that the
sequence @, fulfils condition (iv).

By a theorem of Thron [5], for every = € (0, §] there exists a positive
integer N and a positive constant d such that

fHx)=dn~ "™ for n>N.

6 — Annales Polonici Mathematici XXXVI.1
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This proves that the series
2,: (1 —gLf"(@)]) = v, g [ (@)

diverges, and hence lim G,(z) = 0. This implies that also

1—>00

(35) limG, (x) = 0.
Nn—00
Now, in virtue of Theorem 5 series (33) converges in [0, d] to a con-
tinuous function ¢ such that

(36) p@)< A(x) in (0, 8].

Since the terms of series (33) are positive, the convergence is uniform in
[0, 6]. Conscquently also scries (32) uniformly converges in [0, 6], whence
its sum ¢* is continuous in [0, 4] and we have by (36)

(37) " (@)l < §le) < A(w) in (0, 8]

The function ¢* is a continuous solution of the functional equation
¢ (@) = g(@)¢" [f(@)]+h*(@; ),

whence it follows that the function

(38) o(¥) = ¢ +*(@)

is a continuous solution of equation (2) in [0, 6]. This solution may be
uniquely extended onto I ([4], Theorem 3.2).

It follows from (35) that the continuous solution of equation (2)
in I is unique (ef. [3], or (4], Theorem 2.6). Relation (31) results from (38),
(37) and (34).

Choczewski’s theorem gives only the weaker estimation

@o(®) = ¢+ 0 (2" ™),

under the additional assumptions that m < ¢, the function f is strictly
increasing in I and the function v is bounded in I. (His proof requires

also the assumption that lim inf % (2) > 0, which is not mentioned in
z-—>040

the formulation of the theorem.) Thus, e.g., for the continuous solution
@o(®) = 2% of equation (22) Choczewski’s theorem yield only ¢,(z) = O(x),
whereas our Theorem 8 furnishes a fairly sharp estimation ¢,(z) = O(z?).
However, for equations like (22) we may deduce a still better asymptotic
formula making use of Theorem 6.

THEOREM 9. Let hypotheses of Theorem 8 be fulfilled and assume,
moreover, that k < m and
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lim o(x) =v,>0, lim w(z) = w, > 0.
z—0-+0 z—04-0

Then the continwous solution ¢, of equation (2) fulfils the condition

W, .
(39) @o(@) = ¢+ —aT* Jo(at"),

Vo
Proof. Fix an arbitrary &, 0 < ¢ < min(v,, w,), and choose a 6 > 0
such that
0<1—v.2"<g@)<1L—22"%, w,a?<h"(x;¢)<wa? in [0, 4],

where v, = v,— €, ¥y = Vy+ &, W, = Wy+¢&, Wy = Wy— &. The argument in
the proof of Theorem 8 (cf., in particular, relations (34) and (37)) gives
for function (32)

w . .
(40) " (2) < 'v—l-’l’q_k in [0, 6].
1
n—1

Now, write G = [[ gfi(= = 1—v,2%, h(w) = w,2?, and con-
sider the series

0

(41) @) = Y Gy(@)h[f"(2)]

n=0

associated with the functional equation

(42) ¢ (@) = § (D)5 [f(@)]+h(2).

It follows from Theorem 5 (like for series (33) in the proof of Theorem 8)

that series (41) converges in [0, 8] to the unique continuous solution ¢
of equation (42). We have

(43) ¢(x) < ¢*(x) in [0, 4].
Moreover,
h{x)
whenee the function
. . R
=inf ——— =1-0(«
P (@) :m] o (&™)

fulfils the condition 1—p(2) = o(L—g (x)). Thus all assumptions of The-
orem 6 are fulfilled for equation (42), whence

A

(44) ¢ (@) = A(x)+o(A(2)),
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where
. 3 w
(45) Ag) = @ _ " e
l—g(®) o,
Relations (40), (43), (44) and (45) give the estimation
T gtk fo(at k) < g () < X gtk in [0, 4],
Dyt & Vp— €&

where ¢ may be arbitrarily small provided ¢ is sufficiently small. This
together with (38) implies (39).
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