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On a subclass of univalent functions I
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Abstract. Let S*(1) denote the class of holomorphic [unctions f in the unit disc E, with
SO =0=f (01, f(z)f"(z)/z # 0 for z in E and satisfying ihe condition

[ @ @) -1}/ @ @)+1) <4, 0<isgl,

zeE. In this paper the class M (a, A} consisting of functions f satisfying in E the condition
[(J (e, N=1)J (@, N+1) <4, 0<i<1, where J(x, ) =a{l+z/" @) ()} +(1 —0)zf ')/ f(2),
a > 0, is introduced and its properties are investigated. It is proved that M(a, 4) < S*(1) and the
sharp radius rg, such that feS*(4) also satisfies the condition

(@ =)@ N+1) <4 0<i<], for |z] <ro,
is determined. Further, a representation formula for fe M (a, 1) and an inequality relating the

coefficients of functions in M (a«, 4) are obtained.

1. Introduction. Let f be analytic in the unit disc E, with f(0) =0, f'(0)
=1, f(2)f'(z)/z # 0 in E. Denote by V the class of these functions.
Let S*(4) denote the class of functions fe V satisfying in E the condition

7@ {zf’(Z) }
{f(Z) ‘}/ f@ !

This class was introduced by the first author in [4]. For A = i, the class
S$*(A) coincides with the well-known class of starlike functions.
Let K (4) denote the class of functions fe V satisfying in E the condition

7@ (. @
o {“ 7@ }

For A =1, the class K(4) coincides with the class of convex functions.
We now introduce the class M (a, A) of functions fe V satisfying in E the
condition

(1.1 (e, ) =1}/ J@, NH+1}j] <4, 0<i<],
where J(a, f)=a{l+zf"(2)/f' ()} +(1 =) zf'(z)/f(z) and « is any positive

<1, 0<ixgl.

<i, 0<igl.
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real number. For A =1, the class M(a, 4) coincides with the class of a-
convex functions.
In this paper we investigate a few properties of the class M(x, A).

2. It is well known that all a-convex functions are starlike [3]. We now
prove an analogous theorem for the class M (x, A).
THEOREM 1. Let fe M(a, A), a > 0. Then feS*(A).
Proof. Let
zf'(z)  1—aw(2)
f(z)  1+iw(z)
Evidently, w(0) = 0 and 1+ Aw(z) # 0. We shall show that |w(z)| < 1 for z in
E. For if not, by Jack’s lemma [2], there exists z,, zo€ E such that |w(ze)| = 1
and zow'(zo) = kw(zy), k = 1,
1—Aw(zo) 2uikw(z,)
1+Aw(zg) (1+Aw(zo))(1 —Aw(zq))
W (e, f(z0)—1) _ | 14ak—Aiw(zo)
V(@ f(zo)+1) |1 — (1 +ak) Aw(zo)|’

Now |(J (@, /)~ D)/(J (@, ))+1)| S 4, according as
11 +ak—Aw(zo)l> S11—(1+ak) Aw(zo)®  or  (ak+a’k?)(1-2%) S 0

J (2, f(z0)) =

Since a and k are positive and 0 < 4 < 1, this last expression is positive. This
means that f(z)¢ M(x, 4), a contradiction. Thus the proof is complete.

THEOREM 2. For 0 < B <a, M(a, 1) =« M(B, A).
Proof. If B =0, then M(a, 1) = M (0, A), by Theorem 1. Assume there-

fore that f# 0 and feM(a, ). Then there exist functions w;,, i=1, 2,
analytic in E with w;(0) = 0 and |w;(z) < 1|, i = 1,2, such that

zf'(z2) _1—24w (2) —Aw;(2)
@ 1taw @ M J@)= 1+,1w,(z)
Now,
16.0=Ls@ pra-pe )%
Since f < a, one can show that
C1—iw(?)
JB.f) = 14 Aw(z)’

for some w analytic in E, w(0) = 0 and |w(z)| < 1.
COROLLARY. For a > 1, M(a, A) = K(A).
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Remark. For 4 =1, the above corollary yields the established result
that aconvex functions are convex for « > 1 [3].

3. In view of Theorem 2, given a function in $*(4) we can find the

largest possible value of a such that fe M(a, 4), 2 > 0.
DEeFINITION. Let feS*(4) and

2 =a(f) = lub.{B/fe M(B, 1), f>0}.
Then we say that f'is starlike of order A and type a and we writc fe M*(a, A).
Clearly a is non-negative and may be infinite.
If fe M*(a, A), then fe M(B, A) for all B, 0< B < a. That is,

. 1=w(2)
=—0—— 0<f<aq,
I =1y OSB<a
where w is analytic in E, w(0) =0 and |w(z)) <1 in E. Allow 8 ~ a. Then
J(a, f) = (1—aw(2))/(1 + Aw(z)) or fe M (x, A). Hence fe M*(a, A) for a < oo if
and only if feM(f, A) for 0< f <aand f¢ M(B, 4) for § > 2. Thus we can
write S*(4) as a disjoint union
S*(A) = (J M*(a, 2).
az0
THEOREM 3. Let fe M*(a, 4), « > 0. For 0 < B < a, choose the branch of
{zf' (2)/f (z2)}* which takes the value 1 at the origin. Then the function

Fy(2) = f() (2" @S (2))*
belongs to S*(4).

Proof. fe M*(a, ) implies that fe M(B, A) for all f <a. The result
immediately follows from the relation

zFy(2)/Fy(2) = J (B, f).

Conversely, assume that FeS*(4) and 2 > 0. Define f by the diflerential
equation

(3.1) F(2) = f@ 1z (2/f ()}~
Obviously,

(3.2) f(2)= {é }F”"(I)t' ‘dt}a

is a solution of the differential equation (3.1) with the initial condition f(0)
= 0. We now show that this formal solution is indeed a function in M (a, A).

THEOREM 4. Let F € S*(A) and a > 0. Then f defined by (3.2) belongs to
M(a, A).

Proof. Let y be a path in E connecting 0 and z. We assign a value to
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limargt as t —» 0 on y and the same value to lim arg F(f) as t — 0 on y. Now
define t'* and [F(1)]'"* by continuation. Since F(f) =t+A,t>+ ... =t(1 +
+ A,t+ ...) belongs to S*(4), the bracketed series has no zeros in E. Hence

[F()'* =" (1+ Ay + . ) =" (1 +byt +..),

where (1 +b;t+ ...) is the branch of (1 + 4,1+ ..)"* which equals 1 when ¢
=0,

z b,

FU* ()t~ 'dt = az"*| 1 4+ z+ ... |

JEo [ 2+ ]
Let

TR b,
g(2) = 1/a“:” il 'dt—at[ L ]

We now show that g(z) has no zeros in E.

Let t+ = H(u) be the inverse of u = F(t) and let p=F(z), z = H(p).
Further let I" be a line segment joining 0 and p. Then I lies in the image of
E under F, since FeS*(4) is also starlike. Let y denote the preimage of I, in
E. Then

ap- 1 H (W)
9(2) = 1 jF(t)“ tdt = s ; ul/ H(ujdu.

Ro1_ uH"(u)}
dp
w e

Since F e S*(4), there exist constants M, N > 0 such that

tF'(1)
Re{ F( }2

on 7. Hence on I,
uH’(u) 1 M
R{md hhmeQW'

1/a

Let u = pe’® and p = Re'. Then
? ~—1“H'(u) l
H (u)

|q(2)l =g

tF'(t) <
F(1)

Therefore

1 M . MI|F(@2)
90 > i 7 R =

Now choose the branch of [ (z)] which takes the value 1 at the origin.
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1
Then f(z2) = z[; g(z)] is regular, has its only zero at the origin and f’(0)

= 1. Since f(z) is a solution of the differential equation (3.1), f'(z,) = O for
some z,, 0 < |zo] < 1, would imply that F(z,) = 0, which is impossible. Thus

f’(z) # 0 for zeE. Also from (3.1), J(a, f) = zF'(z)/F (z). This completes the
proof.

Remark. Theorems 3 and 4 yield a representation formula (3.2) for
functions in M(a, A).

If we denote by B(a, 4) the subclass of Bazilevi€¢ functions f defined by
f@) ={afF@) ™ de}'?,
0

where FeS*(4) and a > 0, then it can be easily seen that

B(l, l) = M(a, 4).
a

4. In this section we obtain an inequality for the coeflicients of functions
in M(a, 4).

THEOREM 5. Let f(z2)=z+ ) a,z"eM(a, 1) and let s, =0, 5, =(1—
n=2

—0)(Bm—tm)t WY1 1y =2, ty =(1-0) Bp+(1+a)ap+ayp_y, m=2,3,..,
where a,, B, and y, are defined by

(m—k+1)aapm— -,

(4.1) Bm k(im—k+1)aa, 41,

Ym= 2 k(k+1) a4, 1@m sy
k=1

Then the coefficients a, satisfy the following inequality:
i lsml® < 47 "f 2, n=2,3,...
m=1] m=1
Equality holds for the function
L2 = {{({)t”"' a +aAt)’2”‘dt}a, le} = 1.

Proof. Since fe M(a, A),

() S 1—iw(a)
“(l Y ).*“‘“’ &) 14wy
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where w is analytic in E, w(0) =0 and |w(z)] <1 in E. This gives

42 (1-a)z(f @) —f@f @) +azf 2)f " (2)

= —iw@ (1-a)z(f" @)+ +f )f () +azf (2)f " (2)}.
Given f(z) = z+ Z a,z", we note that

n=2

@ =Y an™ (@ =3 Bl SO D= Y m

m=1 « m=1 m=1

where «,, B, and y,, are defined in (4.1). Thus (4.2) becomes

(l_a) Z (ﬂm_am)zm'l'a z ymzm+l
m=1 m=1

— @D (1-0) Y fuz"+(1+2) T apzm +a Yy
m=1 m=1

m=1

which simplifies to

Z Smz™ = —Aw(2) | Z Iz},
m=1 m=1
Now

IZS,,,Z"'+ Z hm2™| < lerz

m=n+1

where h,’s are some complex numbers. This yields

n—1
Z |Sml? + Z lhwl? < 22 3 ta)®
m=1

m n+1l

or
n n—1
Y Isml? <422 Y Jtal?
m=1 m=1

5. We now determine the radius of the largest disc where the converse
of Theorem 1 holds.

THEOREM 6. Let feS*(A). Then [ satisfies condition (1.1) for |z} <r,,
where rq is the smallest positive root of the equation

1—-(1+a)(14+A)r+4ir2 = 0.
The bound ry is sharp.
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Proof. Since feS*(4),

zf'(2) _ 1 —Aw(2)

f(z)  1+4+iw(2)
where w is analytic in E, w(0) =0 and |w(z)l < | in E,
_1=aw(9) 20Azw'(2)
Tef)= 1+iw(z) (1—iw(@)(1 +iw(2))

]J(a,f)—ll B i|w(z)+azw’(z)/(1—).w(z))
U@, N)+1] 7| 1—adzw' (2)[(1 —Aw(2))

(5.1)

<A

provided

|wiz)+azw' (2)/(1 = 2w (2))] < |1 —adzw' (2)/(1 — Aw(2))|.
This, in turn, is true if
(52 Iw@l+alz W @IAT-Aw)]) < T—adlz W @1 - Aw(2)).
Using the following well-known estimate

o 1=lw()?
W EH <=

inequality (5.2) reduces to
(53) 2 A4+a(l+A)r—ar2l —t(1+ A =r>)+1~r’—ar—alr >0,

where [w(z)] =1 and }z] = r. Denoting the left-hand member of (5.3) by E(t),
we see that E’(r) vanishes when

1+ =-r)
VU 2[A4a(1+ ) r—Ar?]

Evidently t, is positive. Also E"(r) is positive. Now t, § r according as Q(r)
=14 A=2r—(1+ A1 +20)r+ 243 § 0. The equation Q(r) = O has at least
one root in (0, 1). Call the smallest positive root r;. Thus for 0 <r < r,
Q(r) > 0. This means that for 0 < r < ry, t; > r and E(r) attains its minimum
at r=rfor 0<t<r<r,. Also E(r) >0 would imply E(1) >0, 0<1<r.
This condition becomes

t=t

Pry=1—(1+a)(1+A)r+4ir? > 0.

The equation P(r) =0 has at least one root in (0, 1) and let r, be the
smallest positive root. Hence for 0 <r < ry, P(r) > 0. Also P(r,) < 0, imply-
ing that ry <r,. Thus

I, )= (I (&, N)+1) < 4 for |z] < r.
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If |z| = ro, then for the function f corresponding to w(z) = z in (5.1), we see
that

J(a,f)—l’
J(@, f)+1

This shows that the bound ry is sharp.

"Remark. For A =1, Theorem 6 gives the radius of a-convexity for
starlike functions [1].
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