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4
Abstract. Let be given an arbitrary topological space X and its arbitrary de-
composition D: = {X,}se4 into disjoint sets. We take Ay < A arbitrarily snd by
A5 wo denote the family of all i*eA, such that for every 3 # A%, 2ed,, we have
cl(X)nX; =0 (cl being the operation of closure) and wo put

A:=JX; and 4" =] X;.
)'"10 /'!rA:

Any function f: 4R being constant on every X; < A is called D-function on A.

DEriNiTioN. The set 4 is said to be D-connected in X iff (1) A¥ = @. (2) For
every Aedg wo have ¢l (X;)nA* # @. (3) For every D-function f on A the condition

flel(Xy) ﬁA*) < cl(f(Xy) for all ded,

implies the constancy of f on 4.

In the paper a certain method of counstruction of D-connected sets in X: = V¢
for the decomposition D consisting of all GL(7)-orbits in V2 is presented, GL (V)
denoting the general linear group of a given topological vector spaco V and ¢ an
arbitrary natural number.

I. Introduction. In this paper we give a method for the determi-
nation of some families of D-connected sets in V¢ for D being the decompo-
sition of V? into orbits of the linear group GL(V) acting on V¢
in the natural way (called GL(V)-decomposition), V is a given topological
vector space and ¢ a natural number (see Theorems 1 and 2). The prob-
lem of the determination of all D-connected sets in ¥? is open.

The notion of the D-connected set (see Definition 6) is original.
To give the definition let us suppose we are given a topological space X
and an arbitrary decomposition D of X into disjoint sets. For example,
D may be considered as the decomposition of X into orbits of an abstract
group G acting on X arbitrarily (such decomposition D being called
G-decomposition).

If A is a subspace of X, then we denote by D, the decomposition
of 4 induced by D.

DEFINITION 1. We say that a set 4 < X reaches a set B < X iff
BnelA # @ (cl being the operation of closure).
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DErFINITION 2. We say that a set 4 = X is concentrating on a subset
B of A iff each element of D, reaches the set B.

DrriNiTIioN 3. A function f: 4—+R, A c X, is said to be D-contin-
uous itf for each subset ¢ of each element of D, there is f(clC) = cl{f(C)).

DEFINITION 4. A function f: A—R is called D-function iff it is con-
stant on each element of D,.

DEFINITION 5. A set A = X is called D-admissible iff it is the union
of a family of elements of D.

Tor A < X we denote by A* the union of all those elements of D,
which do not reach any other elements of D,.

Now the basic

DEFINITION 6. Let 4 be a given D-admissible set in X. Then 4 is
called a D-connected set in X iff (1) A* # @, (2) A is concentrating on 4%,
(3) for each D-function f: A—R, D-continuous on A*, we obtain that f
is constant.

A theory of D-connected sets has not yet been elaborated. We may
only give a result concerning some sufficient conditions for a given family
of D-connected sets, the union of which is also a D-connected set (see
Proposition 1).

It may be observed that any element of D is a D-connected set in
X. Such D-connected sets are called #rivial.

In the following we are only interested in non-trivial D-connected
sets. Of course, not every decomposition D of X admits non-trivial D-con-
nected sets. Such a situation is, for example, if X is of the form V2 with
V being equipped with an inner product and D is a G-decomposition
of 77 for G being the group of all isometries of V acting on V7 in the
natural way. This may be shown easily by using, for example, the results
contained in Topa’s paper (). We get the same sitnation if & is a uni-
modular or conformal group. But if @ = GL(V), then non-trivial D-con-
nected sets in V7 exist. Indeed, any D-admissible set A = 72 containing
the point 0 = (0, ..., 0)eV? such that 4 # {0}, i3 a non-trivial D-con-
nected set in V? The main purpose of this paper is to give a method
for the construction of other non-trivial D-connected sets in V%

Remark 1. The notion of the D-connected set has some connections
with the following problem posed to me by Professor Golgh:

Let there be given a Lie group @ acting on a manifold X and a G-in-
variant decomposition of X into disjoint submanifolds X,,..., X,,.

(*) 8. Topa, On complete linear, metric, conformal and unimodular classificalions
of space of all finite sequences of veclors in a given veclor space, Zeszyty Naunkowe UJ,
t. 17 (in press).
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Consider the functional equations

(1) p(Te) = (), zeX, Ted,
and
(2) i (Te) = g;(@), xed;, T'eG (j =1,...,m),

¢: X—+E, ¢;: X;—E being unknowns, and assume we are given families
@ (j=1,...,m) of regular solutions of (2) (for example, the families
of all regular solutions). The problem is to determine the family @ of all
regular solutions ¢ of (1) such that ¢ | X; belongs to @;foreach j =1, ..., m.

If for each j, @; contains all constant solutions of (2), then the problem
has a positive solution; @ contains all constant solutions of (1). From
Definition 6 it directly follows that if XX is a D-connected set with respect
to our G-decomposition, then cach continuous solution ¢ of (1) is constant.
This means that in our case @ is the family of all constant solutions of
(1), e.g. the family of all constant functions ¢: X—R.

In other cases the problem has not been worked out.

Remark 2. The following fact does not require proof: If B, and B,
are concentrating on 4, then the set B = B, UB, also concentrates on 4.
This may be generalized for any family of sets.

DEFINITION 7. A family {4,},., of sets in the space X is said to have
the property of finite conmectivity iff for each pair 4°, A" of sets in the
family there is a finite sequence 4,, ..., 4, of its sets such that (1) 4, = 4',
A, =A" and (2) (¢ =1,...,7)

A, U 4, #0  for all goe{2, ..., 7}.

2¥gg

We shall now prove the following:

ProrosiTION 1. Let a family {A;}i4 of D-connected sets in the space
X have the property of finite connectivity and satisfy the condition

(U4)* = 45

ded AeAd

Then A =\ JA, is a D-connected set in X.
Aed

Proof. From the above condition the first and second properties of
D-connected sets directly follow. For tlie third property let us take an arbit-
rary D-function f on A, D-continuous on A*. Denoting f; = f| 4, for Aed we
may state that each function f; is constant. This fact immediately follows
from the D-connectivity of the set 4. The constancy of f is implied by
the property of finite connectivity of the given family of sets. This com-
pletes the proof.
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Remark 3. Let us assume that we are given n arbitrary decompo-
sitions D,,..., D, of X. Then we shall say that we are given an n-de-
composition of X and denote it by (D, ..., D,).

A given m-decomposition (D, ..., .D,) of X is called quasi-cartesian
iff inf{Dy,..., D} =X (3.

It can be easily seen that: If (D4, ..., D,) is a quasi-cartesian n-de-
composition of X and f: X—R is a D;-function for each 7 =1, ..., n,
then f is necessarily a constant function.

II. D-connected sets in V2. We have in mind GL(V)-decomposition
of 77 (see Example 1). We shall use the terminology of GL(V)-orbits
instead of D-components, GL(V)-admissible sets instead of D-admissible
sets, and so on. D-connected sets are called GL(V)-connected sets. For the
construction of certain families of such sets in 7?7 we introduce some
denotations and give some lemmas.

Let us write X = (1,...,4q), p = min(g, dimV), N — the set of all
natural numbers and X = V2,

By K(p) we mean the family of all subsequences of the sequence X
consisting of at most p elements; we also treat the empty sequence,
denoted by @, as an element of K ().

~ We introduce the mapping ¢: XK (p) (see footnote (*)), being defined
in the following way:

Let # = (#,)eX. By n(z) we denote the dimension of the subspace
V(z) of V, generated by the system of vectors z,,..., %, and t(w) we
define as follows:

1. In the case # =0 we put ¢(o) = 9;

2. If » #0, then we put :(#) = (iy,...,14,), where 2 = n(s) and
i3y v+, 4, are obtained by use of the following recurrent formmula:

10 ¢, is the smallest element in K such that @, #0;

20 Suppose that 4,,...,%, are determined and that » < s, Then by
.. W& mean the smallest element in the sequence 7,41, ..., ¢ such that
the vector z; . is linearly independent of the. system of vectors @, ..., ®; .

The mapping ¢ is a surjection.

For a given IeK(p) we denote by X, the coimage of I by the map-
ping «. For example, we have X, = {0}.

It can be easily seen that each set X; is a GL(V)-admissible set.
IfI =@ or I = K (the case of which may appear only in the situation
when ¢< dim7V), then X, is trivial, e.g. consists of one orbit only. If
I #+@, K, then X, is non-trivial. In this case let us denote J = K\I
(a subsequence of K) and introduce the family Mat (I, J) of all matrices

() The family of all decompositions of X into disjoint sets forms a lattice

partially ordered by refinements. A quasi-cartesian n-decomposition (D, ..., Dy)
of X is called cartesian iff sup{D,, ..., D,} = {X}.
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l@ill, eI, jed, such that the condition

(3) i<i= a,f =0
is valid.

Furthermore, let # = |I|, and by F, let us denote the family of
all sequences (¢, ..., e,) of linearly independent vectors of the space V.

Let I = (4y,..., ta)y J = (1, .-y Jm)- For a given ?GX, %7 = (ffi"’o‘vj)i
tel, jeJ, the GL(V)-orbit O(%c) of @ is given by the equations
&y, = 6,

(4) ’ ; (e,)e By,
i, = %5,

where gu}; are given by the decompositions

= alv
= 2. .
Y = YT

Furthermore, the set S (%v) given by the equations

&y ="f-i,! )
(5) Ll eMat(I, ),

wjll = ajl‘o 1:,’

is a section (passing through m) of the space of GL(V)-orbits in X (see
footnote (1)).
We shall prove the following

Lemuva 1. Let IeK(p), I # K, and denote B = X;. Then a given
GL(V)-admissible set A = X (X = V9 is concentrating on the set B iff
the condition
(6) t(z) oI for each zeA
is satisfied.

Proof. For sufficiency let us take an arbitrary Ze4. We have to
show that the GL(V)-orbit O(%) of z reaches the set B = X;. By assump-
tion we have I o I, where I = i(&). The case I = I is trivial. Let I # @,
where by definition I = IN\I. Denoting J = E\I we get for K the decom-
position K =1 uIuJ. It can be verified that the sequence a: = (xk)

(a:,, Ty s x—)qu given by the formulas

n

1_ s
Ty = — %, iel,
n n
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where ('L’i and @ are given Dby the equalities z; = ali +a:%;, has the

properties that LeO(l) and lim Z exists and belongs to the set B. Thiy
njoo T

means nothing but the fact that the orbit O(z) reaches the set B.

To prove the necessity let us assume that the GL(V)-admissible
set A < V7 is concentrating on the set X;. We have to show that for
each TeA we get I o I, where I = i(%). On the contrary, let us suppose
that there exists a point xeA such that I $ I, where I = z(m) Then

we cah show that the orblt O(x) does not reach the set X r and tlns will

lead us to a contradiction of the assumption. Indeed, by the supposition
that { $ I we obtain that I n;f # 0. Let us denote %k, = inf(I naf ) and
distinguish the two cases: (a) ky, =1, (b) &k, > 1.

In case (a) we obtain the fact that

(7) , #0 for each & = (@, ...,7,)e X,

which follows from the fact that k,el. Simultanously, we have that
koeaf, which implies that

(8) #Z; =0 for each ¥ = (&,, ..., ) e X7.
0

If we now assume the existence of a sequence z = (%, ..., Z,) ¢0(x),
n n n 0

convergent and having the property limze X, then by virtue of (8) we
nloo M
obtain lim#%, = 0, which is a confradiction of (7).
njoo ™
In case (b) we follow the same pattern and obtain, instead of (7)

and (8), the following two facts:
(9) @ is linearly independent of , ..., D1

for each @ = (@1, ..., W1y Bryy -y Bg) e X7,
(10) =z, is linearly dependent on %, ..., Tpy—1

for each T = (Tyy ... Tpp1y Tpyy -o oy Eg)er.

By these facts the supposition that the orbit O(a:) reaches the set
X; leads us to a contradiction.
Lemma 1 is therefore proved.

We shall now give an illustration of this lemma.

ExAMPLE 1. Let dimV = 3,9 = 7. Wegetp =3 and K = (1, ..., 7).
SEutting I =(2,5), let us form the set X;. We have
X5y = {(0, €1, @301, Ggey, €5, ag6; +aies, are; +a76,): ajeR, (65, 65)ecHy},

where F, is the family of all linearly independent pairs of vectors in V.
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If, for example, we take
1 1 1 2 3\, hi
4 = {(0, e, bse,, byey, g, €3, bre, +bre2+-brey): bjeR, (€1, 62, &;)¢€ s}y

where Z, is the family of all linearly independent triples of vectors in V,
then it may De seen that the set 4 concentrates on the set B = X, ).
However, for example, the set

C = {(e1, €2, 361+ C1e0, €5, 0, 0, 0): O}ER; (€15 €2, €3) e Hg}
is not concentrating on the set X, ;). Moreover, any orbit in €' does not
reach the set X, the fact of which is a consequence of the following:

LeyMa 2. For arbitrary I,IeK(p) such that 1< I and I # I, we
have the following two facts: 1. Each orbit tn Xyreaches the set X;. 2. Any
orbit in X; does not reach the set X3

This lemma is a direet consequence of Lemma 1.

Remark 4. Any orbit in X; does not reach any other orbit in X;.

This fact follows from formula (4).

From Remark 4 and Lemma 2 there immediately follows:

LemyA 8. If I,IeK(p) such that I = I and I # I, then denoting
A = X, UX7 we get 10 A* = X, 20 A is concentrating on A*.

Now we pass on to the very important

LEryvA 4. Assume that I,I<K(p) and I < I, I # X, I + K. Then
we can prove the following two facts:

(a) For each » = (v;, ;)e X, there emwists T = (%7, &) X7 such that
(11) T =, for kelUJ;

(b) For a given veX; and Te X5 satisfying condition (11), and for
any GL(V)-function f on B = X;UX5 being GL(V)-continuous on X; we
have
(12) f(@) = f(@).

Proof. For proof of (a) let us take an arbitrary zeX and introduce
a point of the form (=;, v;, ;) denoted by z, where v;e V are fixed arbi-
trarily, provided that (o;, v;) is a linearly independent system of vectors
and, as already denoted, I = I\I. It is evident that the point z belongs
to X7 and together with the point # satisfies condition (11).

For proof of (b) let us fix ¢ X; and Z< X7 according to condition (11).
We consider the sequence E = (51:;,.,’:2;, ?) given by the formulas

F; = for iel,

n

— 1 s 2
(13) T; = —%;+o; for iel,

n 7

T =T for jeJ.

n
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We easily observe that 1° zeO(z) for neN and 2° limZ = ». From
n

nloo ™
the assumed GL(V)-continuity of f on X; and by equality 2° we obtain
that

(14) lim (&) = f(a),
and from the constancy of f on each GL(V)-orbit (we have assumed
that f is a GL(V)-function) we find that

(15) 1@ = 1@

Equalities (14) and (15) imply (12). The lemma is proved. .

For the formulation of fundamental results we introduce the fol-
lowing additional notions:

DerFINITION 8. A given family K, = {I,},0 Of subsequences I, of
the sequence K is called & covering of K iff () I, = K.

a6l
By K,(p) we denote families of subsequences such that I,e¢K(p)
for each wef.
DEFINITION 9. We say that a given family K, = {I,},.o of sub-
sequences of K is olosed from below (or simply odlosed) iff for I, = (M) I,
we get I, = @ and I,eK, We call I, the lower bound of K,o. @9

For a given closed covering K,(p) of K let us form the sets

(18) X, = {weV? i(z)eEq(p)}
and
am Xr, = {@eVl (@) = Io}.

Now we may give the first fundamental

TEEOREM 1. If K,(p) is a closed covering of X suoh that |2| > 1,
then the set X, defined in (186), i a GL(V)-connected set in V<.

Proof. From Lemma 2 and Lemma 3 it immediately follows that
if we put 4 = X,, then 4* = X; , X;, having been defined in (17).
Next, from Lemma 3 and Remark 2 we easily obtain that the set 4 is
concentrating on the set A*. Thus we see that for our set A the second
condition in Definition 6, of D-connectivity (in our case D is determined
by the group GL(V)), is valid. To show that also the third condition
is valid we distinguish the following three cases:

1071,=0,21,=FK, 3 I, #0, K.

Case 19, This case is trivial.

Case 20, In this case the covering K,(p) of K is trivial (it consists
only of one element, equal to the sequence K) and the assumption |2| >1
in our theorem is not satisfied.
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Case 3°. At first we show that each GL(V)-function f on A, GL(V)-
continuous on A% is constant on A*. For this purpose let us take an
arbitrary point %eeX 1, 2nd consider the section S(%r) of the space of GL(V)-

orbits in X, , given by formulas (5), where I is replaced by I,. By the
assumption that f is constant on each GL(V)-orbit in X, it is sufficient,
to show that f is constant on S (sg). To show this we shall make use of
Remark 3 and Lemma 4.

Let us make the denotations

Jn =K\Im In = ('i'n '“’i‘n)f Jn = (jl’ -"’jm)
and

&, = "a’;p" (telg)y  Jueday

and define the function

(18) ey, -0y a,) =f(%'1'1’ ey By a}'lao’i) ceey a;,n'fgi)’

(e.g. F'is the restriction of f to S(z)). It remains to show that F is con-
stant. ‘

For this purpose, denoting by U the domain of the function # (re-
member that ||a,}|]eMat(I ayJdq), see (3)), we shall define a guasi-carte-
sian s-decomposition of U, where s is equal to [Q] —1. If in K ,(p) we fix
an arbitrary element I different from I,, then we may associate with
it the following equivalence relation in U, denoted by R; (I, < I and
I, #1I imply that J, o J and J, # J),

(19) (6, .0y 4 )Rz (0, ..., ap Yo>aj = af  for feJ.

Let us denote by Dj; the obtained decomposition of U. We shall
show that the function # is constant on each element from Dj, e.g. that #¥
is a Dj-function.

‘We consider the set X7 and take an arbitrary point %g‘X; of the form

?1 = for iely,

(20) T =1 for iely, I, = INI,,
0
— 1

I

ag-.%,- for jeJ (iely),

.

0

where z is the point previously fixed in X, and »; and aj are arbitrarily
chosen in ¥V and R, respectively, provided that (%vi, v;) form a linearly

independent system. of vectors. At the same time let us consider the

2 — Annales Polonici Mathematici 31.3
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family of points weX;, given by the formulas

@ =2 for iel,,
(21) o3 = ﬂ:;gli for iel o (iely),
w5 = a,}'zv.i for jedJ (iely),

where a} are the parameters of the family.
It may be seen that for each system of af the point # given by (21)
together with fhe pomt 7 satisfies condition (11), where I is replaced

by I,. Furthermore, for 0111 function f all the assumptions in the second
part of Lemma 4 are fulfilled, and by (12) we get the equality f(Z 0 = f(w).

This equality means that for the function F defined in (18) we have the
equalities
(22) F(a;, a5) =F(a;,a5) for each a = [lajll.

Thus we have proved that I' is constant on the element from Djz

passing through the point (oag, ‘}3) e U. But a5 = llg,}ill appearing in formulas
(20) may change arbitrarily, so the function F' is a Dz-function.
. Tf I # I, varies in Ko(p) arbitrarily, then we obtain a family {Ds}
of s = |Q|—1 decompositions of U, being a quasi-catesian s-decompo-
sition of U. Using Lemma 1, where X is replaced by U and f by F, we
obtain that F is a constant function, which was to be proved

Theorem 1 is therefore proved.

We illustrate this theorem in

ExAvpLE 2. We consider the situation given in Example 1. For the
sequence K = (1, .. ., 7) we take the following family of its subsequences:
{(2, 3), (1,4), (3,5, 7), ()}, This family is a coveung for K but it
is not closed. Howeve1 a. covemng of the form {(2, 3), (1, 4), (3, 5, 7), (6), 9}
is a closed covering for K.

Now we shall give a generalization of Theorem 1. For this purpose
we formulate the following two lemmas:

LEMMA 5. Let there be given a covering Kg(p) « K(p) of K and it’s
olosed subcoverings K,,g(p) c Kq(p), ¢ =1,...,r, such that

Kolp) = U Ky (p).

Q"l: o ?
Denoting by 1 a, the lower bound of .K'n (p), and by Xﬂ and X Io, the

sets corresponding, by (16) and (17) wspectwely, to the covering K,, (p),
we may state that

(U XQQ)* = U-X?)o@VIng(p)VQE I 75 I.'QP ::’InIQG 751.-
e ¢
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Proof. From Lemma 3 and Remark 2 we obtain that X5, = X.r,,
for each p. From Lemma 2 and Remark 4 it follows that the GL(V) orbit
in X Io, reaches the GL(V)-orbit passing through a given point -ngXg

iff I, =£ I 9, and IonI,;. = I,, wvhere I, = L(a') TFurthermore, from Re-
mark 1 we get

(UXo) = UIh.
e (4
All these facts, combined with the definition of the star operation,
complete the proof.
By the same assumptions and denotations as in Lemma 5 we formulate

Lemnra 6. For each goe{2,...,7} we have
e<egq

Proof. The given equivalence follows duectly from the definition
of sets X,, (see (16)).
By the same denotations as in Lemma 5 we now formulate

TImOREA 2. Let a covering I o(p) of K be given such that there exists a se-
quence of closed subcoverings K,, (p), e =1, ..., 7, satisfying the following
“conditions:

10 K.Q(.'p) = UKQ (_P),

2° Vierom) Vo' I # Lo, =>InIg # 1,
30 K, n(UK,,) ;é@for sach 00e{2, ...y 1}
e<ep

Then the set X, given for our covering Kqo(p) by (16) is a GL(V)-con-
nected sct.

Proof. By wirtue of Theorem 1 we obtain for each g that the set
X 2, is & GL(V)-connected set. By assumptions 2° and 3° and Lemmas 5
and 6, respectively, we may state that Proposition 1 can be applied to
the fa,nnly {X n} of sets in X = 7% In consequence, we obtain that X,
really is a GL(V) connected set, which was to be proved.

ExaeLE 3. In the case of Example 1 the covering
{1,2,3), (2,3), (3,4,8), (2,8,6), (3,5,7), (2,5,7), (3,6), (3), (2)}

of the sequence X = (1, ..., 7) satisfies all the assumptions of Theorem 2.
Indeed, if we put K, (3) —{(1 2,8), (3,4,58), (3,5,7), (3,6), (3)} and
Kq,(3) ={(1, 2, 3), (2 3), (2,3, 6) (2,5, 7), (2)}, then we obtain a two-
element sequence of subcoverings which are closed and satisfy condi-
tions 10-30,
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