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Abstract, Consider the IVP
(*) w =f(t,u), u(0) =u,

in a real Banach space E. When f does not satisfy any monotone property, the defini-
tion of upper lower solutions can be formulated in terms of functionals from K#*,
the dual cone of K, as follows: ¢(vo—f(t, o)) < 0 for all o such that %,(t) < o < w,(?)
and @(vy(t)—o) = 0, @(wy—f(t, 6)) > 0 for all o such that v,(t) < o < wy(f) and
@(wy(t) — o) = 0. It is known that even when B = R” and K is an arbitrary conein
E®, the statement that there exists a solution of (x) such that vy u<< wy, on I
= [0, T] is not valid. In this paper by strengthening the definition of upper lower
solutions, it is shown the above result is true.

I. Introduction and preliminaries. Let F be a real Banach space
with ||| and let E* denote the dual of E. Let K <« E be a cone, that is,
a closed convex subset such that AK < K for every A >0 and K n{—K}
= {0}. By means of K a partial order < is defined as v < u iff w —v € K.
We let K* = [pe E*: ¢p(u) >0 for all u e K].

A cone K is said to be mormal if there exists a real number N > 0
such that 0 < » < % implies |v]| < N |lu|, where N is independent of u, v.
We shall always assume in this paper that K is a normal cone.

Let a denote the Kuratowski's measure of noncompactness, the prop-
erties of which may be found in [2], [4].
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For any vy, w, € C[I, E] such that v,() < w,(t) on I, where I = [0, T'],
we define the conical segment

[Vo, wo] = [u € E: v,() < u < wy(t),teI].
Let us consider the IVP
(1.1) w = f(t,u), u(0) = u,,
where f e C[I x E, E]. Suppose that v,, w, € C'[I, E] and
{1.2) v, < f(t,v0), wy=f(t,w,) on I.

Then v,, w, are called lower and upper solutions of (1.1) defined in a natural
way.
A function f is said to be quasimonotone relative to K if

v<u and ¢(v—u)=0, peK* implies ¢(f(t,v))<e(f(t,n)).

If E = R" and K = R", the standard cone, the inequalities induced by
K are componentwise and the quasimonotonicity of f is reduced to

v<%w and wov;,=1u;, 1<i<n implies f;(¢,v)<f;(t, ).

In this special case one can prove the following result.

THEOREM A. Let E = B™ and K = R". Suppose that v,, w, salisfy
(1.2) with vy(t) < wo(t) on I and that f is quasimonotone. Then there exists
a solution u(t) of (1.1) on I such that v,(t) < u(t) < wy(t) on I provided
00(0) < %y < w,o(0).

If f is not known to be quasimonotone, we need to strengthen lower
and upper solutions as follows: for each 7, 1 < i << »,

Vo < fi(t, @)  for all o such that vy(f) < o < wy(t) and vy, (t) = oy,
(1.3)

wy; = fi(t, 6)  for all o such that v4(2) < 0 < wo(f) and wy(t) = o;.
We then have the following classical result of Miiller.

THEOREM B. Leét E = R" and K = R", . Suppose that v,, w, satisfy
(1.3). Then the conclusion of Theorem A holds.

See for the details of proofs [1], [5].
We observe that the proofs ~of Theorems A and B depend crucially
on the modification of f, that is f, where f(t, u) = f(t, p(t, u)) and

P;(t, ) = max[vy(f), min{u;, w,;({)}] for each <.

Clearly this modification makes sense only when K = R7.
If K is an arbitrary cone, inequalities (1.2) need no change. On the
other hand, inequalities (1.2) can be formulated in terms of functionals
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from K*, namely, for ¢ € K*

(v, —f(t, 0) <0  for all ¢ such that ,(f) < o < w,(t)
(1.4) and (p('vo(t)—o') =0,
p(wy—f(t,6)) =0 for all o such that v,(t) < o< w,(t)
and glw,(?) —o) = 0.
This version of condition (1.3) allows us to consider cones K other than
the standard cone. The question is whether Theorems A and B hold even
when K is an arbitrary cone. Theorem B may not be valid even in R"

as was shown by Volkmann [6]. Consider the example in R®. Let K = [u
€ R*: (u? +ul)'* < u,]. Take v, = (0,0, 0),w, = (2,0,2),f; =f; = 0 and

Uy if u,e(0,1],
fo=1{2—u, ifwu,e[1,2],
0 otherwise.

But the solution through %, = (1,0, 1) is %4 (?) = (1, ¢, 1) which does not
remain in the sector [v,, w,]. Note also that f is Lipschitzian. Thus it is
evident that f being Lipschitzian is not sufficient to prove Theorem B in
the set up corresponding to (1.4).

In this paper we consider this open problem and show that if the
lower and upper solutions given by (1.4) are further strengthened, Theorem
B is valid. We mention that a result corresponding to Theorem A has been

recently proved [3] in an arbitrary cone by extending the monotone iter-
ative technique.

II. Existence via method of upper and lower solutions. Let us begin
by listing the following conditions for convenience.
(A;) For any bounded set B in [vy, w,],

o(f(I x B)) < La(B);

(Ag) NIf(2, wy) —f(2, ua)ll < Llluy—usll, tel, uy, Uy € [vg, Wel;

(Aj) vy, wo € C'[I, E] with v,(f) < wo(t) on I such that there is an
M > 0 satisfying

glv,—f(t, 0)+M(v,—0)1<0, o@lw,—f(t, 0)+M(w,—0)]1 >0,
for all o e [v,, w,] and ¢ € K*.

Remark 1. If f is assumed to be uniformly continuous then condi-
tion (A,) is superfluous. For, in that case,

a(f(I x B))r= m’;ma( f(t, B))

and consequently (A,) implies (A,). See [2], [4].
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Remark 2. If, in addition, ¢ in (A,) is such that for every ¢ € K,
@(v(t)—0) = 0 and @(w,(t)—0c) = 0, then condition (As) reduces to
condition (1.4). Suppose now that f satisfies

(Ay) ft, uy)—f(t, uy) = —M (uy—u,) whenever u,<<u, and U, Uy
€ [vy, wo] for some M > 0.

Then it is easy to show that condition (1.2) implies (A,;). We note also
that (A,) implies that f is quasimonotone relative to K.

As was mentioned earlier, when (4,), (1.2) and (A,) are satisfied,
a result corresponding to Theorem A is true. See [3] for details.

Let us consider the linear IVP

(2.1) w = F(t,u), %(0) = u,

where P(t,u) = f(t, n(t)) —M(u—n(t)) and 5eC[I,E] is such that
0,(?) < n(?) < wy(t) on I. We need the following lemma proved in [3].

LEMMA 2.1. Let assumption (A,) hold. Then the IVP (2.1) has a unique
solution u(t) on I.

For any 7 e C[I, E] such that »,(?) < n(?) < w,(t) on I, define the
mapping A by An = u, where 4 = %(l) is the unique solution of (2.1)
corresponding to 5. Concerning the mapping A we have

LEMMA 2.2. Suppose that assumptions (A,) and (A;) hold. Then A maps
the sector [vy, w,] into itself.

Proof. Let 5 e C[I, E] be such that 7 € [v,, wo] and let v = A7.

For any ¢ € K*, set p(t) = @[u(f) —v,(f)] so that p(0) > 0. Then for all
0 € [vg, Wol,

P = elf(t, n)—M(u—n)—f(t, o)+M(v,—0)],

in view of (A,). Choosing ¢ = %, we have p' > —Mp which implies p ()
> p(0)e~* > 0 on I. This proves v,(t) < u(f) on I. A similar argument
shows that «(?) < w,(t) on I. Hence u = An € [v,, w,]. Since 7 is arbitrary
the proof is complete.

In view of Lemma 3.2 we can define the sequence %, = Aw,_, with
Uy = ¥, OF w, satisfying u, € [vy, wo] on I. We now need the following
lemma which is proved in [3].

LevMMA 2.3. Let K be a normal cone and let the assumptions of Lemma
2.2 hold. Then the sequence {u,(t)} is uniformly bounded, equicontinuous and
relatively compact on 1.

By Lemma 2.3, we can conclude by Ascoli’s theorem that there exists
uniformly convergent subsequences of {,}. Suppose that u,(f) —u,_,(t)
— 0 as » — oo, then it is clear from the definition of {u,} that the limit
of any subsequence is the unique solution of (1.1) on I. It then follows
that a sclection of a subsequence is unnecessary and the full sequence
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{u,(t)} converges uniformly to the unique solution () on I such that
u(t) € [vy, wo] on I. Thus it is sufficient to prove that m(t) = 0 on I,
where m(t) = limsup |ju,(f) —u,_,(t)||. To this end, we have

n—-00

LEMMA 2.4. Let K be a normal cone and let assumptions (A,), (A,) and
(Ag) hold. Then m(t) = 0 on I.

Proof. Since f maps bounded sets into bounded sets, we let [|f(¢, u)ll
< N for t eI and % € [vy, wo]. Then for ¢,,%, €I,

b, (£) = Uy Bl < 18 (B2) — U ()| 2N [, — 1,
< m(ty)+2N [t —1o|+-¢

for large n, given &> 0. Hence m(?,) < m(ty) +2N [t —1,] 4 €. Sinee i,, 1,
can be interchanged and ¢ > 0 is arbitrary, we obtain

Im () —m(t5)] < 2N |8, — 1,

which proves that m(¢) is continuous on I. Now (A,) yields

¢
0 () =, (D < [ [[1(8 %a(8) —F(5) %aca ()] +
0
+M [[u, (8) —Up_y (8) |+ M [lu,, () —'“n(s)”] ds

¢
< [ UL+ [ (5) — ey ()| M oty (5) — 2, (8)]]ds

For a fixed t € (0, T'], there is a sequence of integers n, < n, << ..., such that

[ty 41 (8) — %, (B)]| = m(t) a8 n = m; — oo and that m*(s) = lim [u,(s)—
n=nk->c0
—u,_,(8)|| exists uniformly on I. It therefore follows because of the fact

m* (8) < m(s),
t
m(t) <(L+2M) [ m(s)ds on I,
1}

which implies that m () < m(0)e™“+** ¢ eI. Since m(0) = 0, we have
m(t) = 0 on I proving the lemma.

We have therefore proved the following main result of the paper.

THEOREM 2.1. Assume that the cone K is normal and that conditions
(A,), (Ap) and (A;) are satisfied. Then there exists a unique solution wu(t) of
(1.1) on I such that vy(t) < u(f) < wo(t) on I provided v,(0) < uy < wy(0).

COROLLARY 2.1. Let E = R" and let (A,), (A;) hold. Then there exists
a unique solution of (1.1) on I such that u(t) € [vy, wo] provided v,(0) < U,
< Wo(0).

This corollary is itself an extension of Miiller’s result [5] and answers
affirmatively the open question in view of the counterexample of Volkmann

[6].
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