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Vertical lines and points of a surface

by O. KARWOWSKI (Warszawa)

Introduction

The idea of a vertex of a plane curve (which for the ovals has led
to the “four-vertex theorem’) has been generalized also for skew curves,
although we have not the universally accepted definition of such a point
for those curves. As far as we know, the notion of a vertex has not so
far been generalized to surfaces.

This paper is an attempt at such a generalization.

Basing ourselves on some ideas introduced by P. Szymanski [1], we
define first the notion of vertical direction at a given point on the surface
and next we determine the vertex as a point for which every direction
is vertical. In order to make the calculations simpler we define the vertical
direction by the vanishing of the so called geodesic derivative of the
normal curvature, although—as it seems to us—it would be better
to define the vertical direction as a direction along which the so called
longitudinal curvature reaches its extremal values.

The theorems concern vertical lines and points given in the present
paper do not allow us to assert that the notions introduced will turn
out important. In spite of it there are some interesting facts, as for example
the connections of vertical directions with the so called Codazzi tensor.

Chapter I has an introductory character: it contains (with notation
not quite the same as adopted by the author) the most important ideas
from paper [1], which are fundamental for further considerations.

I would like to express my gratitude to professors: P. Szymanski
and S. Golgb for their suggestions and remarks.

I. Preliminary remarks

1. We shall be concerned with quantities of the first, second and
third class () connected with a two-dimensional surface embedded in
the three-dimensional Euclidean space. The quantities of the first class

(!) The notions introduced by F. Minding.



142 0. Karwowasaki

are those quantities which are only functions of a point P of a surface
(r — radius-vector of that point)

(1.1) A= f(r).

A quantity which is a function of a point P and a direction (with a de-
termined sense) characterized by the unit vector t fixed at P and lying
in the tangent plane of a surface at P is called a quantity of the second
class

(1.2) B=f(r,t).

Finally a quantity of the third class is a function of a point P, direction ¢
and a plane (z) passing through this direction and characterized by its
unit normal vector p:

(1.3) C={f(r,t,p).
Let the surface considered be represented by the vector equation
(1.4) r=r(u, )

where u!', u? are the parameters giving the regular Gaussian system of
curvilinear coordinates, the field of r vectors is of class (3, and

(1.5) [rre] #0.

Partial differentiation with respect to u* is denoted by the suffix k, so
that
or ocr Pr
o’ T dwow’ TR T pubwiour
and the square bracket means the vector product. All suffixes may assume
the values 1 and 2.

Since the total differential of the radius-vector of a surface (1.4)
is equal to

(1.6) dr = rpdu*,

ry=

the unit vector ¢ of the direction on a surface may be represented in the
form

ar
(1.7) t=d._r:rk”k’
where
(1.8) dr =|dr|
and (%)

du*

E_ 2%

(1.9) pr=

(*) The symbol dr is not a differential. It becomes the differential of the lenght
of a certain curve lying on the surface when t is a vector tangent to that curve.
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Calculating the square of the length of the vector t, we get

(1.10) (rir)pip? = 1.
Since the scalar product
(1.11) (r,-r,) = g“

represents the components of the metric tensor of our surface, (1.10)
may be written in the form

(1.12) giipp? =1.

A quadratic differential form (1.12) is a modification of the classic 1-st
Gaussian quadratic form. Its diseriminant

(1.13) g = det|gy]

is by (1.5) always positive.

2. At each point of a surface there exists a unit normal vector
defined by

(1.14) m = %}—,["1"2] .

Jf we take in the tangent plane the unit vector I orthogonal to ¢ and
equal to

(1.15) l = [tm] y

then we obtain on a surface at the given point M and for the given di-
rection ¢ the orthonormal right-handed trihedron (M; ¢, m,1,).
The vectors I, ry are evidently linearly dependent; thus we may write

(1.16) I=rpok.

We now find the relation between the coefficients w* and p*. It follows
from (1.15), (1.7) and (1.16) that

rrof =[rim]ut.
Scalar multiplication by r; of both sides of the above relation gives
(1.17) (riry) oF = (rygrym) pt

where the brackets on the right side of (1.17) denote the mixed product
of three vectors.

We now introduce the so called Ricei symbol ¢;, in our case with
two suffixes. It is defined, however — in another way than it is com-
monly done (3) — as the mixed product of the vectors r, and m, so that

(1.18) & = i— (rirym) .
Vg

(®) Compare [3], p. 84.
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Evidently ¢; is skew-symmetric (e; = —¢&;). We shall also use the sym-
bol &Y. It is determined by the relation
(1.19) eae” = 0}

where 6{ is Kronecker’s symbol and the summation index 7 is placed
on the different places. It is easy to prove that

(1'20) gk = — &k -
Using (1.11) and (1.18) the relation (1.17) may be written in the form
due® = Vgeupt .
Multiplying the above equality by &* we obtain
eguwt = geastiyt =V gu!

and finally the required relation between «* and u? is
. 1 . _
(1.21) po=— gk .
vy

3. In the above-mentioned paper [1] the notions of directional
curvatures (vector and scalar) of a surface are introduced. They are:
the vector curvature of a surface in the direction of ¢

dm
and its two components along the vectors ! and t-— the longitudinal
curvature 4 and the transversal curvature =, so that
{1.23) 2 =Ates=AN+1t.

We shall be concerned next with the scalar quantities 4 and r, which
may be represented, as follows from (1.22) and (1.23), by the formulae

d
(1.24) R (t 7’;—') ,
am
(1.25) T = (l W) :
Bince
dm )
(1.26) -d—r' = mk,uk

and using (1.7) and (1.26), we may express the scalar curvature A defined
by formula (1.24) as the quadratic form — analogous to the 2-nd funda-
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mental form of Gauss —

3= (s 8) (g ) = = (ryrm)
or

(1.27) A= hpuip
where the eoefficients hj;. are defined by the formulae
1.28) hjr = —(rjmy) = (mry);

this means that they are the components of the second tensor of a surface.
Similarly for 7, on the basis of (1.16), (1.26), (1.28) and the relation
inverse to (1.21), we get the following quadratic form

. . .. 1 .
T = (rjo’) (m;pd) = (rym;) 0ipt = — eflgyh;; pkut
Vy
or
(1.29) T = Qupip®

where we introduce the notation

(1.30) o = e ehguhy; -
Vg

It should be emphasized that both quantities of the second class:
the longitudinal curvature 2 and the transversal curvature z of the surface
in the direction t, coincide at the given point M with the normal curva-
ture and the geodesic torsion respectively of the curve passing through M
and tangent to the direction ¢t.

When we seek the directions (so called principal directions) for which
the longitudinal curvature A take its extreme values, we are led to the
conclusion that the transversal curvature r must then disappear, this
means that we have an equation

(1.31) O pipt =0 .

The values of the principal curvatures A, and 2, may be obtained from
the well-known equation

(1.32) A2—2HA4+K = 0,
where

(1.33) OH = A+,
and

(1.34) K = JyA,

denotes respectively the mean and the total (Gaussian) curvatures of
a surface.

Annales Polonici Mathematici XIV 11
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4. Among several intrinsic differential operations on geometric
quantities connected with a surface and introduced in the above men-
tioned paper ([1], p. 44-55) of special interest for us is the notion of the
so called derivative at a given point M, in a given direction t and a given
plane (z) characterized by its normal vector p. This derivative applied
to the quantities of the second class B(r,t) is defined by the following
formula ([1], p. 49, formulae (36) and (37)):

dB B 0B du*
22 _ 98 e 9288
(1.35) drgp 0w A ouk  dry,)’

moreover the following conditions must be satisfied:
(1.36) (¢dt) = 0 (because of the unity of ¢t)

(1.37) (pdt) = 0 (because of the parallelism of the vector dt of infini-
tesimal translation of ¢ to the plane (x)).

k
In order to evaluate gf we apply formula (1.35) in the case where
()

B =t and then we obtain
di ot  duk
g — .22
(1.38) 6 p* + o G
But

t = Op(ri ') = ript
and
ot 0 i out {
'37‘=3—Pk('i#)="i£,;="i‘5;c=rk- '

Taking it into account we obtain from (1.38)
dc dux

; 1t
= ,-.k‘ue‘uk 4 — .
drgy drp)

(1.39)

Denoting by w the vector

(1.40) w = ryutuk,
relation (1.39) may be written in the form
k
i — w _I_rk 1”_, .
dre) )

Multiplying scalarly by ¢ and by p the above equality and taking into
account conditions (1.36) and (1.37), we get the following system of
equations:

duk
(tw)—{—(trk)d—:_:;-) =0,

duk
{pw) + (pry) dro 0.

(1.41)
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K
In order to obtain the explicit form of the expressions grL we
®»

denote by D the determinant

(ery)  (tryp)

- = ([tp)[rir2)) = Vg(tpm) ;
[(pry) (pra)

thus
(1.42) D= —)g(pl
and by DF the determinants

ik (tri) (t‘ID)

D= — e*([tp][r;w])
H(pr:) (pw)
or
(1.43) DF - — gik(qur;)
where we introduce the vector
(1.44) q det [tp] .
Since
(1.45) dT(m =

we finally have

k ik, .
(1.46) d# — € (qwr’l)

drey  Vg(ph)
(f1], p. 51, formulae (44)).

The particular case of the notion considered is the so called geodesic
derivative ([1], p. 77-79) of the quantity B(r, t). It is the derivative (1.35)
taken in the plane normal to the surface. Then

(1.47) p=1 and qgq=-—m
and expression (1.46) becomes

du* 1 .

(1.48) S 2 ek (maory)
dr K9

([1], p- 78, formulae (164)).

We shall be further concerned essentially with the geodesic derivative
of the longitudinal curvature A. It is easy to prove that the quantity
obtained is an invariant of the transformations of the curvilinear system
of coordinates on the surface and that the following relation holds:

di ( ?m
4 Snil P Radiiid
(1.49) drq, drz)
11+
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II. Vertical directions

1. Let us consider a regular piece of surface (S) of class €®* and
a plane curve (K) lying on it and passing through a given point M of
this surface. Let the curve (K) be a line of intersection of the surface (8)
and a plane (P) normal to it at the point M and passing in the given
direction ¢ (Fig. 1). The plane (P)
evidently contains the unit normal
vector m and is perpendicular to
the vector ! = [tm]. Suppose that
the point M is a vertex of the plane
curve (K), i.e. that at this point

dx
T 0
Fig. 1. where » is the curvature of (K)and

s denotes its natural parameter (the
length of the are). As we know, the curvature x» of the normal inter-
section (K) is equal to the normal curvature x, of this curve and .
coincides at the given point with the longitudinal curvature 1 of the
surface in the direction ¢ tangent to (K) at this point.

Now we want to find at the point M such a direction I (orthogonal
to t) that if we pass from M to the neighbouring point M’ of surface (S)
in this direction and if we cut the surface by the plane (P’) normal to
it at M and parallel to plane (P), the vertex of the line of intersection (K')
obtained in this way will be at M’. This leads directly (see Chap. I, p. 144)
to the condition for such a direction: the derivative of A at point M in
the direction ¢ and in the plane (P), or shortly the geodesic derivative
of 2, must be zero. Thus we introduce the following definition.

DEerFINITION 1. The vertical direction at a given point M is a direction

of the vector I for which the geodesic derivative of longitudinal curva-
ture 1 vanishes.

According to this we may find the vertical directions from the
equation

di
21 _—
(21) T
Since [form. (1.35)]
1 k
(2.2) da A ., A du

Try ~ 5" T B Argy
condition (2.1) takes the form

ok .. oh dut

(2.3) aur —7—5“7‘21,(—0—
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where [form. (1.48)]
k
(2.4) W1 ak(maory).
drg Y9

By means of (1.40) these expressions may be written in another way
namely as the quadratic forms

d
(2.5) G L ) i

drg, Ve

Their coefficients may easily be expressed by means of the Christoffel
symbols of the second kind. It is well known ([2], p. 123, form. 2) that

ri =IGr,+hym .

Multiplying vectorially the above equality by r; and next scalarly by m,
we obtain

1
(r,r.-,m) = .l"f,’-(r,rpm) = ﬁs;pﬂ?} or Blpl?;- = -17; (r;r,-,-m) .

Finally multiplying both sides of this relation by &* and using (1.19),
we get

(2.6) I = —L—e""(rzrﬁm) :
Vg
Thus finally (2.5) takes the form
dl‘ k

2.7 — Tk
(2.7) e

(7] oA
Since the derivatives e and P have the following expressions:

oA
(2.8) o Ochiz 't
and
7 0 . ou oW )

(2.9) a_”k = Wc(hiiﬂllﬂ) = hy; (aﬂk/‘ 3‘::, ) = 2huept

equation (2.3) may be written in the form

(2.10) (ks — 2hal ) '’ =0,
or shortly
(2.11) P iy —

where the coefficients P are

(2.12) Py 2 0phy; — 2hiT; .
7 ) 7
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The symmetry of P;; with respect to the first two suffixes implies only
six different coefficients (2.12) and equation (2.11) becomes

Py (p2)? + (Pra + 2Pyg) (uYPu® + (Pz.m + 2Pyg0) pM(p2)? + Pogg(p?)* = 0 .

Denoting by P, @, R and S the four coefficients of the cubic form in the
left side of the above equation, we have

(2.13) P (i) +@Q ()2 -+ Rt (p?)? + 8 () = 0
where
P = Pm = 31"'11 - 2hllFlll = 2h12P121 y

Q = Pps+2Pygy = 83hyy + 20,hs — 4hyy Tty — 2k, Iy — 4hyo iz — 2hoo Iy
R =P 2z T 2P 128 = axhzz + 232h12 - 4h22T 122 - 2h1211 222 - 4h12F 112 - 2hnr 212
8= Pzzz = aahn_2h1zrzlz—2h2zp222 .

(2.14)

It is easy to prove that the coefficients P,; do not represent any tensor
although the whole equation (2.11) is an invariant under a parameter
transformation (see Chap. I, p. 144). We may thus infer that there exists
a form of this equation for which the above-mentioned coefficients are
already the components of some tensor. Indeed, if we write according
to (2.9)

oA

- hiip +hipst

then, substituting this together with (2.7) and (2.8) in (2.2), we obtain

da ‘s . .
g~ ihoig) i 1 — BT ' g " — by g’ g p*

= (Ouhi; — bl — hal j) 't p* .

The expression in brackets is a covariant derivative of the second funda-
mental tensor h; of the surface, and therefore we may write

di .
(2.15) e Vichij s p*
where
(2.16) Vihij = ohi; —Ihhi —I';khil .

The covariant derivative Vih;; is a tensor already (the so called Codazzi
tensor (see [5], p. 45)) (). But in further calculations it will be more con-
venient to use the coefficients P;j.

() Equation (2.11) is equivalent to the relation Cy,miuiuk = 0, where C,, %
V.hy; is a symmetric part of the Codazzi tensor.
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The variables u* according to (1.7) characterize the direction t.
Now we want to introduce the variables w* characterizing the direction I.
Ipserting (1.21) in (2.11) we get

o1 ) 1
Pz E Jartiew? ﬁ JpmeP o™ —= Imevo™ =0
or shortly
{2.17) Pt o™ o™ = 0,

where the new coefficients py,, are
(2.18) Pumn = gde""gpms"ﬂgme"VP ijke -

Also these coefficients are symmetric with respect to the first two suf-
fixes and, just as (2.11), equation (2.17) reduces to

(2.19) P (0P 4-q(0')20? +roYw?)? +s(w?)? =0,
where we write
P = Py = P(612)* — @ (912)°911 +Rra(¢1:)* — 8 (gu)?
g = Puz+ 2P121 = 3P (612)°02s — Q1o (612)2 + 2011 o]+
+ Rl 911922 + 2 (912)*] — 38(911)*01z
7 = Py 1 2P122 = 3PG1s(g2s)* — Qo[ G11 922 + 2(91:)* ]+
+ Be1sl(610)* + 2011 Gao] — 3891:(91)*
$ = Paze = P(92s)’ —Q12(720)* + B (912)°02s — 8 (1) -

(2.20)

The formulae obtained may be simplified if we introduce on our surface
the orthogonal curvilinear coordinates. Then we have g¢;,, = 0, and (2.20)
reduces to

p = —8(gu)*,

q = RB(91)%s

7 = —Qg¢u(g:)?,

§ = P(ga).
Although then the form of the coefficients P, ¢, R and § does not change,
but the Christoffel symbols It in formulae (2.14) take the following form:

(2.21)

a_ 1 __ 1
I, = 20 20 I = 292232911 )
1 1 2 1
. 9 = = ha
(2.22) 12 = gg- Oah1 » Iy, 20 1922 »
1 1
Tip=—5s—0p, To= 65— 9afes -

201 “Gss
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For further investigations we want to simplify relations (2.14) still
more. We can do this assuming that the parametric lines %' = const
and u? = const coincide with the curvature lines of the surface (5). Then,
as we know, besides the condition of orthogonality ¢,, = 0, the condition
of conjugatness, i.e. h, = 0 must be satisfied. Thus coefficients (2.14)
by the use of (2.22) become

h
P =oshy, — -2 a1911 = gno (y_l)

Q = Ozhy — azgn( hn )
(2.23)

h h
R — a a ( 22 11
oz — 0105, Ja gu) ’

/ h
= Oghgp — ‘22 azgzz—' G2202 ( 2:)

Since in the coordinate system formed of curvature lines the prinecipal
curvatures 4, and 1, are equal

(2.24) A =huldu, A= hyl/gsm,
we may write (2.23) in the following way:
P = gnoi4, ,

Q = Oghy;y — 0591 (224, —4,)
R = 01hgy —01025(24, — 4,) ,
8 = g5052; -

The two middle coefficients @ and R with respect to the Mainardi-Codazzi
equations, which in our curvature system are

Oghyy = §(4+ 22) 0201
Orhyy = 3(A1 4 2,)01 020
and with respect to the relations
1

(2.25)

(2.26)

3211 = ‘2%329'11(12_11) 3
(2.27) )
6 }»q - ~—-3 1 *)-
142 2922 19'22( 2 1)

obtained by the differentiation of expressions (2.24), take the final form

Q = 30:0u(A—4) = 39udsk ,
B = —30,¢s(A:—A4,) = 30204, .

(®) Such a system of coordinates is regular everywhere except at the umbilic points,
which we exclude from general considerations.
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So in the curvature lines system the coefficients of equation (2.13) are

P= gnoh, R =3gudh,
Q =30uddy, 8= gndls
and the coefficients of equation (2.19) may be expressed by the formulae

(2.29) P = —(91)*92292%2 7 = —3(911)%(922)"0:41 ,
g = 3(gu)?(922)°0122; 8 = gu(g)’dr4; -
Finally the equation for vertical directions (2.19) may be written in the
following form:
(2.30)  (911)%022s( @' )® — 3911 92201 (@) 0®+
+ 3911 2002 0 (0?)* — (G2)?01 41 @?)® = O

(2.28)

or
(2.31) g2 [gu02Aa0" — 372301 2,0%] — Gos( W?)*[go001 41 0® — Bgp0adi 0’ ] = O .

We see from (2.31) that if one of the principal curvatures of the surface
i8 constant, which is valid for so called pipe surfaces ([4], p. 75), then
this equation has a double root (w!)® = 0 or (w?)? = 0; the second root
satisfies the equation

(2.32) 9110:20" — 322012500 = 0
or the equation
(2.33) G220, 0% — 3¢,0,4,0' = 0 .

This case in particular occurs for all developable surfaces, for which,
as is well known, one of the principal curvatures vanishes. The only
exceptions are: the plane — then also the second principal curvature is
equal to zero — and the cylinder of revolution, for which the second
principal curvature is constant. In these cases the equation of vertical
directions is identically satisfied (®). Moreover, the identical vanishing
of equation (2.30) holds for the sphere. These are of course all the possible
cases. And thus we have the following theorem:

THEOREM 1. The only surfaces for which every direction s vertical
are: the plane, the sphere and the cylinder of revolution.

2. For further applications of the notion of a vertical direction it
will be convenient to express the coefficients Py, and P, Q, B, 8, by the
derivatives of the radius-vector r of a surface. To begin with, we shall
prove that for the second member on the right side of formula (2.2) we
have the relation

oA  du*

34 — e AV
(2.34) o arg, 2 (wm;)u

(°) Compare with the theorem about the vanishing of the Codazzi temsor ([5],
p. 46).
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Indeed, since we may write

1 1
[rim] = 7; EPY(rirp)ry = —— EP8Q;,1s ,
we obtain from (2.4)
au* 1 1

2.35) — = ——¢é&Xr; =——_-7" —= eP3gp(r,w) = — ghs(r
( ) drg, '/35 (rjmao) l/ £ '/ eP%g,p(rsw) = — gks(r,w)
and in consequence

oA du*

o drg = —2hip'g"(ryw) = —2hi(raw) i .

By the Weingartenf ormulae ([2], p. 194, form. 4) m; = —hir,, we

finally have
oF duk

Pk T
which was to be proved.
Since
A= hypiw = (mr;) iy = (ma),
we have

Odp® = (myw) p* + (may) p*

and the geodesic derivative of the longitudinal curvature A may be rep-
resented by the relation

di
g, = (M40 o () 2 (g 10) ik = (maao) i + 3 (mgao)
Next we have
wy = Op(ri; wipl) = ripptp
and finally

di
(2.36) :11-_({ = (mry) pipipk -+ 3 (myry) piplp*

It follows from the above that the coefficients P;; may be expressed
in the form

(2.37) Pij = (mry) + 3 (myry;)

and the coefficients P, @, B and 8 in the form
P = (mry,) +3(myry),
Q = 3[(mryy,) +(mery) +2(myry,)],
R = 3[(miry,) + (m,ry) +2(m,ry,)],

8= (mrgg,) +3(myry,) .

(2.38)
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8. By means of the classification of cubic forms of two variables
we now want to determine the number of solutions of equation (2.13).
As is well known, ([6], p. 171, tab. V), the complete system of algebraic
concomitants for the form

(2.39) | = Qi

contains, besides the form f, its double hessian, i.e. the quadratic form
a1 o*f

(2.40) % —i—sdetr W ’

its discriminant 4 and the jacobian of the cubic form f and quadratic ¥

o(f, ¥)
(2.41) g 0, ) "
The classification of form (2.39) is based on these four concomitants.
To begin with, we assume that f does nmot vanish identically. The case
where the cubic form is identically equal to zero will be considered further
in Chap. IV. If 4 # 0, then the given form is nonsingular; if 4 = 0, then
it is singular.

The nongingular cubic form splits into three independent linear
forms; moreover, if 4 < 0, oneof -them is real and the other two con-
jugated complex, and if 4 > 0, all three are real ones.

If the cubic form is singular, then it can split into the product of
a linear form and the square of another linear form. Then the covariants %
and 9 are not identically zero. If form (2.39) can be written as a cube
of a linear form, then % =0 and 9 = 0.

As follows from the above, it is sufficient to consider the hessian %
of the cubic form and its discriminant 4. Now we want to calculate these
quantities for the form on the left side of equation (2.13)

_2|3Pu +Qu* Qu'+Rp?

*=5\Qu+Rwr Rt

— 2 (8P +Qut) (Rt +38u%) — (@i + Ry,

and finally the hessian < has the form
(242) % = 2 {[3PR—Q*] (1) + [9PS — QR]w'u? +[3Q8 — R} (u2)*} .
Its diseriminant

1 |2(3PR—@*) 9PS—QR

4=gi 9PS —QR  2(3Q8—R?)

— 2 [4(3PR —@)(3Q8 - B)— (9PS—QR)
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may be written finally as follows:
(2.43) =y (12PQRS —27P%8* —4PR?—28Q° + Q*R?) .

If at the given point M expression (2.43) is equal to zero, then at this
point there exist on the surface (S) one or two real vertical directions.
Moreover, in this case the following equalities

(2.44) 3PR—Q* = 9PS—QR = 3Q8S —R* — 0

must be satisfied.

One real vertical direction may be obtained also when 4 is different
from zero and negative. The existence of three real different vertical
directions occurs only if expression (2.43) is positive.

III. Vertical lines

1. The notion of vertical direction introduced in Chap. II is for
us rather an auxiliary notion. The fundamental one is the idea of a verti-
cal line defined as follows:

DEFINITION 2. A curve on a surface (S) whose tangent at each point
is along a vertical direction is called a vertical line.

To obtain a differential equation of the vertical lines on a surface (S),
we notice that, similarly to u* = du*/dr, (1.9), the coefficients w* may be
represented in the form
_ vk

(3.1) wk = ar’

where the system of lines ¥* = const and 2* = const is orthogonal to the
system of the parameter lines: ' = const, u* = const. Inserting (3.1)
in (2.19) and multiplying by (dr)?, we get the following equation of the
family of vertical lines

(3.2) P (dvY)® + q(dov')2dv? + rdot(dv?)? -+ s (dv?)® = 0,

where the coefficients p, ¢, 7,8 are given for an arbitrary system by
formulae (2.20) and for the system formed by the lines of curvature —
by formulae (2.29). To simplify the calculations we shall further use
the curvature system on the surface in question (then of course lines
v* = const and «* = const coincide). So the equation of vertical lines
(see (2.30)) may be written as follows:

(3.3)  (gu)0ulo(du’)® — 3011 5001 Ao dui*du® +
+ 3¢5 92200 du (dW?)? — (§0)01 A1 (AU?)° = O .

The solutions of this equation represent in general three one-para-
meter families of curves on the surface (S).
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In some cases (compare with example 1b below) it is more suitable
to use the differential equation of the orthogonal trajectories of the
family of vertical lines, viz.

(3.4) P(duty +Q (dutdu? + RduX(duz)? + S (duz)p® = 0 ,
obtained in the same manner as equation (3.3).

2. Let us now consider the problem of vertical lines on several
particular classes of surfaces.

1° At first we investigate developable surfaces. Excluding the cases of
the plane and of the cylinder of revolution (see Chap. II, p.148) we assume
that, for example, 2, = 0 while the second principal curvature 1, = 2H
# const. So the equation of vertical lines on developable surfaces is

(3.5) G Q0P gos, H Qi — 30,2, Hdt] = 0 .

One (double) family of vertical lines coincides with the lines of curva-
ture u? = const, the second one is a solution of the equation

Now we want to consider the vertical lines on particular kinds of
developable surfaces, i.e. on cylinders, cones and torsoids.

a) Cylindric surfaces. An arbitrary cylindric surface, whose
generators ! = const are along the direction of the unit vector e, and
whose base curve p = p(u') (u!— natural parameter) lies in the plane
perpendicular to e, may be represented by the vector equation

(3.7) r(ut, u?) = p(u') - w% .
Hence we find that

rh=p, r, =¢€,
gu=1, G2=0, ¢gp=1, g=1
and
rpn=p9", r,=0, re =10,
hy = —(ep’p”), hye=0, hey =0,
so that

r 1z

h=—(ep'p”"), 74 =0
and finally

(3.8) H = —%(ep’p"”).
Since the mean curvature H does not depend here of %%, we have

9,H = 0 and according to (3.6) we conclude that besides the lines u* = const,
i.e. the family of curves parallel to the base curve of the cylinder, also
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some of the generators #! = const are vertical lines, namely those, which
pass through the points of the base curve for which

d 1
(3.9) W(GPP )=0.

But (ep’p’’) = |#| where » denotes the curvature of the base curve
and (3.9) coincide with the condition for the existence of vertices. It means
that to vertical lines of cylindric surface belong those generators which
pass through the vertices of the base curve p = p(u!).

b) Cones. If we put the vertex of a cone at the centre 0 of the radius-
vectors and as its base curve p = p(u!) (%' — natural parameter) we
take a spherical curve (on the unit sphere with centre at 0), then we may
write the vector equation of the cone in the form

(3.10) r(ul, u?) = ulp(ud).
Hence
r, = u¥p’, Yo =0,
gu= (), 2=0, (go=1, g = (u?)?
and
r,=u%p", rp, =10, ry =0,
hy = —u¥pp’'p"’), hy, =0, hep =0,

so that

P Loops™y, 1,--0

1=—E§(PPP)a 2= 0,
and finally

1 1

(3.11) H = —55(er'e”) .

Besides the curves %?> = const, i.e. the family of orthogonal tra-
jectories of the generators of the cone (lines similar in form to the base
curve), we have as the vertical lines the curves which according to (3.6)
satisfy the equation

1 r s r 17
(3.12) —;z(pp p')du?+3(pp p")AU' =0 .
But p == m (the normal to the unit sphere), whence: p' =t, o' = xn
(from the first Frenet formula), and therefore we have
(3.13) (pp'p") = m(mtn) = x,8in6 = x,,

where », denotes the curvature of the base curve, n — its unit vector
along the principal normal, 6 — the angle between vectors n» and m,
and x, — the geodesic curvature of the base curve with respect to the
sphere.
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Now (3.12) may be written as
(3.14) %x;duz+3x,dul =0.
From (3.14) it is seen that the vertical lines are the generators passing
through those points of the base curve for which
(3.15) wy=10.

These points may be called ‘the geodesic vertices’’ of the spherical curve.
Evidently the great and small circles of the sphere have at each point
the geodesic vertex.

Besides these ‘‘particular solutions” of equation (3.12) or (3.14)
there exist vertical lines satisfying the equation (x, # 0)

du? %y o 1
or, in another form,
du?
(3.17) ?ﬁ-ctgtp(ul) dut =0,

where @(u') is the angle between an arbitrary curve from the family
of verticals and the respective generator ! = const of the cone.
Equation (3.16) cannot in general be effectively integrated; on the
contrary, this may easily be doen in our case with equation (3.4) of ortho-
gonal trajectories of vertical lines.
On the basis of formulae (2.38) we calculate the coefficients P, @, R
and 8§ for the cone. Since

- 9 111 —_ re —_ -
Py =", Faa=p", Ty =0, rp=0

and

m=[p'p], m=[p"0], my=0,
hence

P =—u¥pp'p"), @ =—3(pp'”), R=0, 8=0.
So the equation of orthogonal trajectories of vertical lines for the cone is

dur  ,(pp'p"")
— 43— dul =0.
u? (pp’p"’)

By integration we obtain

(3.18) u = C(pp'p”')~ "3 = Cx, ",

where C denotes the constant of integration.
Now we find this family of vertical lines for the elliptic cone.
The radius-vector of its base curve has the form

p = aja
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where )
a = acoswti+ bsinulj1-ck
and

a = |a| = Y a*cos?ul + b2sin?ul {¢*.

The first and the second derivatives of p(u!) are

Ll pole 2 0 a,
£ =3 e T4 a? a® a?
and hence
RT; 1 Y] abe

Differentiating this we obtain
(3.20) %y = (pp'p’"") = — 3abca’[a® .

According to (3.18) the orthogonal trajectories of vertical lines are the
curves

u? = Ca = CY a?cosul - b2sin2u?4-c2.

There are — as is easy to see — ellipses formed by the intersections of
the cone by the planes perpendicular to its axis. Now its not difficult
to imagine the vertical lines of our elliptic cone. In this case it is even
possible to get their equation in an explicit form. Namely, integrating
the equation

du? d

& Law—o
U a

obtained from (3.16), if we insert (3.19) and (3.20), we have

(s]'n -ul)(a'+0')/(ba—¢3)

(3.21) u = O T

Equation (3.21) gives, together with the above mentioned curves
«4* = const and the chosen generators (four in this case), all the families
of vertical lines on the elliptic cone.

¢) Torsoides. The last kind of developable surfaces are the surfaces

created by the straight lines tangent to the space curve, i.e. so called
torsoids. Their vector equation is

(3.22) r(ut, u?) = p(u?) + (w> —ut)t(u'),

where p = p(u!) is the equation of the edge of regression for the torsoid
(w' — the natural parameter), t = dp/du' — the unit tangent vector of
this curve. By the parameters chosen in this manner the straight lines
w' = const (the generators of the torsoid) and their orthogonal tra-
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jectories u? = const form on this surface the curvature system of coordi-
nates. From (3.22) we get

r,=(w—u)x(u)n, 7r,=t(ut)

where x, denotes the curvature of the edge of regression and n the unit
vector along the principal normal. Further we have

Ju = ('"'2 - '“'1)27“;) y J2=0, gp=1, g= (“2_“1)2"3 ’
and

rn = (0 —ut) sk — (0 —u') it + [('u,2 —u') d—zll_“l] n,
rp=mn, Trp=0,
where k is the unit vector along the binormal of the edge of regression
and x, its torsion different from zero. Hence follows

by = W=y, Ry =0, hy=0
and finally

;I-l =x2/[’ll,2—u1|%1, ;u_: =0.
This implies that the mean curvature for our torsoid has the form
(3.23) H(ul, u?) = y[2 |u%—ut|, .

Besides the family of the curves #? = const (see form. (3.5)), to the
vertical lines belong the curves satisfying the equation

3.24) @2 — ) [0 22—, T4\ & | du? — 3 (02— sl = 0
aw? du?

where for simplification we consider only one shell (u®>—wu'> 0) of the
torsoid. It is quite clear that none of its generators #! = const is a vertical
line.

Equation (3.24) may be simplified for a certain group of torsoids,
viz. when their edge of regression is the generalized screw curve, i.e. the
curve for which

#y{3, = const .

dx,

x —
2 dut

(3.25) du®—3(u" —u')xf(u')du' = 0,

Then xl—:%— — 0 and (3.24) reduces to

which after a change of variables may be reduced to the Riccati equation.

2°. The second class of surfaces which we want to investigate with
respect to their vertical lines are the surfaces of revolution, of course
except the sphere and the cylinder of revolution (see Chap. II, p.148). The

Annales Polonici Mathematici XIV 12
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radius-vector of a point of an arbitrary surface of revolution may be
written in the form

(3.26) r(ut, u?) = f(u')sinu?i+f(ut)cosuj+ulk
where the function f(u!) characterizes the shape of the meridian.
So we have

Ju=1+13w), =0, (gooa=7(w), g=7u)[1+F*(ul)]
and

hy = —f /() VI+F2d), hy=0, hy=Fu)Y1+f2u),

whence

(327) A=~/ ), A =1f(@)VI+ ).

Since the curvature of meridian x, may be represented by the formula
= f(uh)] (1 +%ut)

it follows that x», = —4;, moreover 9,4, = 9,4, = 0 and the equation of
vertical lines on the surface of revolution according to (3.3) may be
written in the form:

F(ut) du? [f’(ul) % (@) +3(1 +2(u) % (dul)’] =0.

Rejecting the points of intersection of the meridians with the axis of
revolution (f(u!) = 0), which are the singular points of the surface or
of the curvilinear system (in our case of the curvature system: they are
umbilics), we see that among the vertical lines we recognize the curves
u* = const, i.e. the meridians, and two other families of vertical lines
satisfy the equation

dn

dul

It follows from (3.28) that to the vertical lines belong also those
parallels «! = const for which

(3.28) A (ut) (du?)®+ 3 (1 +f"*(u)) g% (dur)2=0.

dx,
dul

i.e. the parallels passing through the vertices of the meridians.
For some values of %! equation (3.28) may have no real solutions.
As is easy to prove, the vertical lines satisfying this equation will exist
only on those parts of the surface on which the following inequality occurs

dn di,
dut dul

In particular, some kinds of surfaces of revolution can not have
vertical lines which are the solutions of (3.28).

=0,

(3.29) <0.
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1V. Vertical points

1. Besides the notions of vertical direction and a vertical line, the
third notion which we want to introduce is a vertical point or shortly
a vertex of a surface. It is defined in the following manner:

DEFINITION 3. The vertex of a surface (8) is a point for which all
directions are vertical ones.

It follows from this definition that at a vertex the cubic form in (2.19)
must identically vanish, i.e. all coefficients p, ¢, r,s must be simul-
taneously zeros. In view of their form (2.29) and excluding the singular
points of a surface, when ¢,; = 0 or ¢,, = 0, we see that the vertical points
are the solutions of the system of equations

(4.1) eh =0, &l =0.

This system in which the number of equations is greater than the number
of unknowns is, as we know, solvable in some exceptional cases. In
particular, when both principal curvatures A, and A, are constant, i.e.
when the surface is a sphere, plane or cylinder of revolution (comp.
Chap. II, p. 153, theorem 1). Each point of these surfaces is a vertex.

Since the Gaussian curvature K is given by formula (1.34), by dif-
ferentiating it we obtain

O K = A0;Ay - 2504, .

If conditions (4.1) are satisfied at the point M, this implies the fulfilment
at this point of the system

(4.2) 5K = 0

and we have the following theorem:

THEOREM 2. The wertices of a surface are al the same time poinis at
which the necessary conditions for the extreme values of Gaussian curvature
are satlisfied.

For the developable surfaces (K = 0) system (4.2) is an identity
and system (4.1) reduces to the following one:

(4.3) &H =0 .

As follows from our previcus considerations (see Chap. ITI, p. 157, example
1° a, b, ¢) developable surfaces have no vertices at all but only the vertical
lines.

The vertices of pipe surfaces for which one of the principal curva-
tures is constant may also be obtained from system (4.3).

2. The vertices of the surfaces of revolution may be found only
(see Chap. ITI, p. 161, example 2°) among the roots of equation f(u') = 0,
i.e. among the singular points of the surface or of the curvilinear system:

12+
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in our case among the umbilics. Then, of course, through the umbilic
which is simultaneously the vertex of a surface pass an infinite number
of vertical lines (the meridians) which coincide with the lines of curva-
ture. In other cases the number of vertical lines passing through the
vertex can be one, two, three or even zero. A similar situation occurs
for example in the case of umbilics and lines of curvature. Now we want
to consider this problem for the ellipsoid with unequal axes.

3°. Ellipsoid with unequal axes. The parametric equations of
such an ellipsoid (a® > b2 > ¢?), if the Gaussian system of coordinates is
formed by the lines of curvature, are ([7])

a¥(a?—u) (P —w?)
T e e
bz(bﬂ_ul)(bﬁ_u’)
=)
o¥(e® — ut) (¢ — u?)
=D

(4.4) Y =

~2

e pl—

where a2 > «' > b2 and b2 > «2 > ¢t

Writing
(4.5) f(uk) = (@ — uk) (b2 — k) (¢ — u¥) ,
we have
(e —w?) o (W =)
gll - 4f(u1r ’ gl! =0 9 g22 - 4’(,“’)
and
1 wl —u? 1 ut — u?

hyy == abe ——— hy, =0 hyy = ——ab ———— ,

i 1 e (uh) ) 12 ’ 22 1 Ve f(uw?)]
whence

abe abe

(4.6) 1= (ul)a/s(uz)ﬁ ’ Ay = (u1)1lz(ua)a/2 ‘

Let us calculate the derivatives of 4, and 4,:

3abe abe
31'11 - — 2——(u1)5,z(u2'jilj—2' y 8112 = — W-_—W ,
4.7
* 2d — abc 2.2 3abe
2’11 - 2(’“«1)3/2(’%2)3/2 ’ 2he = — -ZW .

As we see, they are always different from zero, and this implies that
system (4.1) has no solutions! If we take into account the vanishing of
», ¢, 7, 8 we obtain in view of (2.29) only the umbilics: #' = %* = b
The six vertices of our ellipsoid cannot be found in this way. This follows
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from the special kind of singularities, appearing in the system of eurva-
ture lines on the ellipsoid with unequal axes, viz. on the curves
ul'=a> and u' =205
the coefficient ¢;, takes an infinite value and on the curves
w="5 and u=c?
the same applies to the coefficient g,,. Since these very curves and their
points of intersection are the required vertical lines and vertices of the
ellipsoid, to obtain them we must remove from the equation of vertical

lines the above-mentioned singularities.
According to (3.3) we have

3 wl)
— 33 abe (1 — u2)? []‘2(u1) (:‘1)1)/2 (o (daer)y® —
_ wlu? neg a w2 s
Tl 7 () e e (P VA — Sy ) Gty (e 00 +

(w?)?
]‘2(u2) (/lbl)5/2 (u2 )1/2
Multiplying by the product (u!)*2(u®)>?f2(u')f*(u?) we can reduce this
equation to the form
(u)ife(ue) () — (w2 (w2 of (u) f () (Yoo —
— (W) (2R (w') f (u?) dut{(du?)? + (w?)'f3(u') (du?)® = O

(du2)3] =0.

or
(4.8) [(wPf (v?)du' — (u?)f (') duP][(u'Pf (w?) (dut)® — (u?)*f (') (du?)*] = O .
Decomposing the second bracket into linear factors, we have the follow-

ing equations of the three families of vertical lines for the ellipsoid with

nnequal axes:
(w2 )?f (2?) dut — (u2)?f (wr)du? = 0,

(4.9) W) f (u2) dut — w2y f(ut)duz = 0,
Wy f(u) dut + u2)/ f(ut)duz =0 .
We see that now the identical vanishing of the cubic form on the

left side of (4.9) occurs for those values of «! and %2 for which at the same
time following equations are satisfied

flut) = (@ —u?) (> —ut) (c*—u') = 0,
f(u?) = (a®—u2) (b2 —u2)(c®—u?) = 0 .
These equations give the vertices of our surface which evidently coincide

with those known in analytic geometry of gquadrics. The particular so-
lutions of equations (4.9) are curves

w=a*, w=c, w-—=>b or u=DbE.
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At each vertex of the ellipsoid two of these vertical lines intersect
(Fig. 2) (*). We obtain the remaining verticals by solving equations (4.9).
First of them may be expressed by means of elementary functions,
namely in the form

al bl (}‘
a®— ’uz)(b'-a')(c’:aT) (b2 — ’uz)(a'-b’)(c'-b’) (02 — u’)@-ct)(bﬂ—ca)
a®—y! b2 — ) c —ql) -

410) | 4

where A denotes the constant of integration. Other two solutions contain
the elliptic integrals.

8. The considerations and calculations made in Chap. III point
to the existence of a close connexion between the vertical lines of a surface
and its lines of curvature. For devel-
opable surfaces and the surfaces of
revolution (and also for pipe surfaces)
one of the families of vertical lines is
always the family of lines of cur-
vature.

Since we have taken for caleula-
tions the curvature system on the
surface, it is easy now to determine
the reciprocal situation of vertical li-

Fig. 2 nes and lines of curvature. It follows

from (3.3) that, if we put in this equa-

tion u! == const or wu? = const, then either &4, or &, must vanish,

when one of the families of vertical lines coincide with one family of

lines of curvature. If two families of vertical lines are simultaneously

families of lines of curvature, then the derivatives 4,4, and 8,4, are both
equal to zero, i.e. A, = 4,(u2) and 4, = A,(u!).

4. The vertical and the principal directions are connected with
one another in some other way.

To find this relation let us consider the derivative of longitudinal
curvature 4 of the surface (8) not in the normal plane (the geodesic deri-
vative) but in an arbitrary one passing through the direction ¢. In other
words, we want to consider now the oblique intersections of our surface.
Let the normal vector p of such a plane form with vector m an angle 6
different from zero. According to the definition of such a derivative (see
Chap. I, p. 144, formulae (1.35) and (1.46)) the only difference between

(*) A nearer investigation of equations (4.9) shows that the vertices are the singular
points of these equations. For example the vertex W, is the saddle point of the first
equation.
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it and the geodesic derivative lies in the quantities du*/dr. Expressing
the vector p by means of vectors I and m, we have

(4.11) p = cosOm +sinbl
whence

(4.12) q = [pt] = sinfm —cos 6l
and also

(4.13) (pl) = sin@ .

Inserting (4.12) and (4.13) in (1.46) we get, using (1.48),

3 K
apt _ dpF 1 ek ctg 0 (hor;) ,
d”'(p) dr(l) Vg

thus the derivative of curvature 1 in an arbitrary plane of the direction p
may be written in the following way:
di_ di  ctgh

(4.14) ~ 3
drgy  drgy Vg

etk lwr;) 3 .
ouk
Since we have
[rid] = [r{tm]]| = —m(rs)

and

(hwr;) = —(maw)(rit) = — i
inserting this together with relation (2.9) in (4.14) we obtain

di di

1. . ,
= —42ctg - —= Ae*q;ihpapint .
drgy  drg vy ’

But according to (1.30) and by (1.29) we finally have

~ da di
(4.15) dr—(,,, = m +2ctg it .
This is the required formula (8). As we see, the derivative of 2 in an arbi-
trary plane may be expressed in the form of a sum of the cubic form
dAldrq and of the form of the fourth degree which is the product of two
quadratic forms 4 and z.

Omitting the trivial case of asymptotic directions when A = 0, we
may formulate the following theorem:

(*) If we denote by x, the geodesic curvature of the oblique intersection at the
point M, then we have x, = Actg6 and equation (4.15) takes the form:

di dA
— = —t 21, .
drp dry ’

This is the first formula of Forsyth ([5], p. 48, form. 12a).
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THEOREM 3. If the given direction 1 is simultaneously wvertical, i.e.
dijdrg = 0, and principal, i.e. T = 0, then it is the direction for which the
derivative of A in an arbitrary plane passing through the direction t ortho-
gonal to l vanishes.

Of course the opposite theorem is also true. A similar situation occurs
when expression (4.15) is satisfied identically, i.e. when the vertices and
the umbilics of a surface coinecide.

5. The examples of vertical lines considered in this paper for several
kinds of surfaces do not satisfy in many cases our intuitive idea of such
lines. There are often curves, which ‘“optically’® could not be distinguished
as the verticals (for cylinders — the intersections by planes perpendicular
to their generators, for cones — the intersections by concentric spheres
and for surfaces of revolutions — the meridians). According to our geo-
metrical imagination, as the ‘“proper” verticals we would like to regard
the chosen generators for cylindric and conic surfaces and the chosen
parallels for the surfaces of revolution (see examples 1° and 2° from
Chap. III). This divergence between the results obtained and our geo-
metrical intuition arises partly from the analytic definition of the vertical
direction. Condition (2.1) is a necessary and not sufficient condition
for the extreme values of 1 in the normal plane. But the same situation
occurs in the case of vertices for the plane curve, where we also have
an analytic definition instead of the geometrical one.
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