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Abstract. Let K be a nondegenerate continuum which does not separate the complex
plane. In geometric terms a sufficient condition is expressed guaranteeing that K is a Faber set.

1. Introduction. As usual, we shall denote by N the set {0, 1, 2,...}, by Z
the set of all integers, by R the set of all real numbers and by C the set of all
complex numbers. For M = C we shall denote by dM and diam M the
boundary and the diameter of M, respectively. Given ¢ > 0, we put

HH(M) =inf ) diamM,,
n=1

where the infimum is taken over all sequences of sets M, — C such that
diamM,<eand M < C] M, . The linear measure (= length) of M is defined
by n=1

H'(M) = lim #}(M).

e—=0+
Given a function f defined on the interval (g, b), we shall denote by
var[f: <a, b)] its total variation on {a, b).

In the year 1903 G. Faber [5] published in Mathematische Annalen the
paper Uber polynomische Entwickelungen. In this work, stimulated by
reflections about the theorem of Runge, Faber introduced a sequence of
polynomials corresponding to any domain bounded by an analytic Jordan
curve. These polynomials, which turned out to be extremely useful in
complex function theory (see for example [7], where extensive references may
be found), are now called Faber polynomials. They can be defined in various
ways. For our purposes it will be convenient to give a definition by means of
the generating function.

Let K = C be a nondegenerate continuum (i.e., a compact connected set
containing at least two different points) not dividing C (i.e, C\K is
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connected). Denote ¥ (w) the conformal mapping of C\ 4, where 4 is the unit
disc 4 = {we C; |w| < 1}, onto C\K, normalized by ¥ () = 0, §’(0) > 0.
In the following we shall always suppose ¢'(o0) = 1.

This assumption means that the logarithmic capacity of K is equal to
one. Hence in this case ¥ has in C\4 the following expansion:

(1 u//(w)=w+ao+fi+
w

The Faber polynomials F,(t) =z"+ ..., ne N, are defined by

W) _ 2 Fald)
l/I(W)—Z n=0 z" ‘

Let us denote by A(K) the Banach space of all complex functions f
continuous on K and analytic in all interior points of K equipped with the

norm || f||x = max|f(w). From (2) we can readily define a mapping T: w"
wek

— F,(z), which may at once be extended by linearity to a mapping of the set
of all polynomials, namely

2

N N
(Tp)(2) = Zo a,Fyp(z) for p(w)= Xo a,w"

T is called the Faber mapping. If there exists a constant M < oo such that
|ITPllx < M||P||,, then T may be uniquely extended to a continuous
mapping of the whole Banach space A(4) into 4(K) because of the density
of the set of all polynomials in 4(4). Following the terminology introduced
in 1974 by Dynkin [4], we shall call K in this case a Faber set.

Examples of Faber sets are: Jordan domains bounded by a Ljapunov
curve [4]; convex domains; domains with bounded rotation (beschrinkte
Randdrehung) in the sense of Radon-Paatero [9] (cf. also [7], Satz 2,
p. 51). J. E. Andersson [1] remarks that in fact in [9] the following stronger
result is contained: K is a Faber set if for every ze dK the condition

(3) lim inf [ |d.arg(y (Re™)—z)| < C <

R—-1+ 0

is fulfilled.

In the present paper we shall be concerned with a geometric condition
on K guaranteeing that K will be a Faber set.

Let IT = {{eC; |{] = 1} be the unit circle and D{CeC I{] <1} the open
unit disc. For zeC denote by =,: { = ({—2)//{ —z| the mapping of the set
C\{z} onto II. For compact Q = C we define, for 8¢ (0, 2n),

N2(O) =Y xow), ueQ\{z}, =)=

where the sum is taken over all ue=n; '(6) and y, denotes the characteristic
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function of Q. Thus N2(6) is the number (finite or infinite) of all points lying
at the intersection of Q with the half-line {z+te; t > 0}. N2 is Borel
measurable ([14], p. 217) and therefore we may adopt the following

DerINITION. Let K < C be a compact set. For each ze C we define
K (z) = | NX(®#)d#1(0).
n

This quantity is sometimes called the cyclic variation of K at the point z.
Further we define

V(K) = supv*({).
{eK

Our result may now be formulated as follows:

THEOREM. Let K = C be a nondegenerate continuum which does not divide
C. Let

4) V(oK) < 0.
Then K is a Faber set.

Let us make some remarks before going to prove the theorem.
Condition (4) can be fulfilled also for curves which are not smooth and
contain many angular points. Especially all Jordan curves with bounded
rotation fulfil (4) (cf. [15]). It is not hard to construct a Jordan curve having
countably many angular points of magnitude 3n. Such a curve cannot be of
bounded rotation, because a curve of bounded rotation can have only a
finite number of angular points of magnitude not less than a given angle (cf.
[13], p. 72). Therefore our theorem generalizes the result of Kévari and
Pommerenke. The essential result of the present paper is in fact Theorem 3.2
which shows that the geometric condition (4) implies the uniform estimate (3)
of the cyclic variation of level curves of the conformal mapping (1) at every
point of K. On the other hand, condition (4) is not fulfilled for many arcs
Q(f) given by the equation y =f(x), 0<x<1, where f: (0, 1>> R is
continuously differentiable. Let C!(<0, 1)) be the Banach space of all
continuously differentiable functions f on the interval (0, 1), f(0)=0,
equipped with the norm ||f|| = max |f'(x)|. Then the set

xe(0,1)>

{feC (0, 1); #V() = 0 W[eQ(f))

is residual in C!(0, 1)) (cf. [10]).

The paper is based on two deep results. The first one is Wazewski’s
characterization of rectifiable continua [17]. The second one is Young’s
theory of length [18], which is based on a deep study of prime ends of a
simply connected domain realized in [16] and which makes it possible to
pass to the boundary values of the derivative of the conformal mapping (1).
The author owes thanks to Dr. J. Krdl for drawing his attention to

paper [18].
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2. In this section we summarize some fundamental results of Young’s
theory [18] of length in the generality needed for our purposes and some
known auxiliary facts needed for proving the theorems of Section 3. The aim
of Young's theory [18] is to extend the definition of length (and area, of
course, but this is of no interest in the present paper) to continuous images
of more general plane sets than the segment, for example to the continuous
image of the boundary of any simply connected domain, where the classical
definitions no longer apply.

Let A c R*. The function M(x): A—> Nu{w} is said to define a
multiple system of which it is the multiplicity function. Any set of points is
identified with the multiple system whose multiplicity function is the
characteristic function of that set. If u(E) is any measure defined for sets E of
an addition class, we define its extension u(M) to multiple systems by the
formula

) uMy= Y u(M,),
n=1

where M, = {xe A; M(x) = n}. In order to make this definition correct, the
notion of an additive class must be extended in an appropriate manner to
multiple systems M so as to contain all sets M,. It is clear how to do this
and therefore we may refer the reader to [18], p. 277, for a formal definition.
In this paper we will take for u(M) only the length #'(M).

Let K < C be closed, A = R*, f: K —» A being continuous. We denote by
M (x;f, %) the number (finite or + o) of points ue # < K fulfilling the
equation f (1) = x. We write briefly M (x) if % = K. M(x) is Borel measurable
and, if K is a segment, then »#"' (M) is the classical length of the curve f(u)
([18], (3.3), p. 278 and (4.1), p. 280).

Let K = C be a compact set, f: K —» R* being continuous. Two points of
K will be termed equivalent if they lie on the same connected subset of K
throughout which f (1) is constant. Let E¥ be any finite set consisting of non-
equivalent points ue K for which f(u) =x. For % <« K we denote by
M?*(x; f; %) the upper bound of the number of points of the various E¥ < %.
We write M*(x) for M*(x; f; K).

Evidently M*(x) < M(x) and M*(x) = M(x) if M(x) < o0."

LEMMA 2.1 (1) M*(x) is Borel measurable;
(i) u(M) = pu(M*) if u(M) < oo (cf. [18], (5.4), p. 287, and (5.8), p. 289).

To this end let K < C be a continuum, f/: K - A = R* continuous. We
say that the intrinsic length of f is the number #'(M*), where M* is the
multiplicity system defined by the multiplicity function M*(x; f; K). Let G be
any domain contained in C\K. The boundary length L;(f; G) 1s defined as
the number s#* (N (G)), where N(G) is the multiplicity system defined by the
multiplicity function N(x;f; G), the number of prime ends (in the sense of
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Carathéodory, cf. [2], [16] for the definition) of G throughout which f (u)
assumes the constant value x.

ExaMprLE 2.1. Let K be the sum of IT with its radius <0, 1), G the
bounded component of K, f(«) = u. Then the intrinsic length of K is 2n+1,
but L, (f, G) = 2n+2, because we must add the length of the radius twice.

The following fundamental assertion holds:

ProposiTioN 2.1 ([18], Theorem (7.2), p. 294, and (7.3), p. 295). Let
K < C be a continuum, - K - A c R* being continuous. Let % — K be such
that the intrinsic length L*(f|%) of f|% is finite. Let G be complementary
domains of K whose boundaries are contained in %. Then

(i) Y L. (f; G) < 2I* (f14%);
G

(1) if L, (f; G) is finite, it is the classical length of the closed curve g(e")
= f(@(e")), where ¢ is the conformal mapping of D onto G.

ProrosiTiION 2.2. Let Q = C be a compact set fulfilling (4). Then #(Q)
< o0 ([6], Proposition 1.1, p. 448).

ProposITION 2.3. Let Q c C be a compact set consisting of a finite
number of components. Then for every zeC the estimate v2(z) < V(Q)+n
holds ([6], Proposition 2.1, p. 454).

Let us remark that the proof of the last proposition is based upon
Wazewski’s deep characterization of rectifiable continua [17]; the
formulation of Wazewski’s result is contained also in [6], p. 452-453.

3. Our aim in this section is to prove Theorem 3.2. We start with an
auxiliary assertion.

LEMMA 3.1. Let G = C be a simply connected domain whose boundary
contains at least two different points, #' (G) < 0. Then the set of prime ends
of G consists only of prime ends of the first kind, that is, the prime ends of G
reduce to points.

This lemma is proved in [16] as a consequence of (11.3), p. 15.

ProrosITION 3.1. Let K be a non-degenerated continuum which does not
divide C and fulfils (4), ¢ being the conformal mapping (1). Then the function

Y(e") = lim y(w), 0<t<2m,

.y
is absolutely continuous and the following holds:
. d : o .
(1) — (") = ie" lim yY'(Re")
dT R-1+

almost everywhere (a.e) on (0, 2rn).
(ii) There exists a finite constant M such that for every R > 1

2n
[y (Re)dt < M.
0
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Proof. According to Proposition 2.2 we have H'(dK) < oo and by
Lemma 3.1 the prime ends of C\K are only of the first kind. Consequently
¥ (w) is continuous ([11], Theorem 2, p. 407) in C\D. Denote its extension to
IT also by Y (w). Now denote by id the continuous function defined on éK by
the formula idu = u. All connected subsets of 6K on which id is constant
consist of single points. Hence M*(x;id; dK) =1 for every xedK and
consequently the intrinsic length of id equals #'(dK), which is finite.
According to Proposition 2.1 (i) we have L, (id; C\K) < 2 (0K) < . The
conformal mapping of D onto C\K is given by the function ¢({) = ¢y (w), {
= 1/w. SO ¢ is continuous on 4 and ¢@(e") = Y (") if we write { =re”, w
= Re"". The length of the curve @(e"), 0<t<2n, equals L,(id; C\K)
according to Proposition 2.1 (i) and therefore it is finite. Hence
var [¢(e"); {0, 2rn)>] < 0. Now let us consider the function

g@)=o()-1/4, ¢g(0)= P_{g@(()- 1)

which is holomorfic in D. Because of the finiteness of var [¢(e"); <0, 2rn)] we
also have var[g(e"); €0, 2n)>] < o0 and therefore the following assertions
hold (cf. [3], Theorems 3.10 and 3.11, p. 142): g(€*) is absolutely continuous,
g'e H', and consequently

zjf lg'(ré")|dt <M <o, g'(e")= lim g'(re)
0

r—1-

d . . )
exists a.c. on {0, 2n) and ZEg(e“) = ie" g’ (e") a.e. on (0, 2n). According to

- d )
the definition of g we obtain z(p(e") = ie" ¢’ (€") a.e. on <0, 2n) and

2n 2r
[ lo'(reé)dt < | |g'(ré") +2nrfr® < M +2n/r?.
0

0

Because of

do@) _dvw)
d; dw
2x

[ W' (ReM|dr < M/R*+2n < M+2n < oo,
0

—w?) we obtain (i) and

and so (i) is proved.

PrOPOSITION 3.2. Let Y (&) be the function of the preceding proposition
and ze C\K a given point such that v*®(z) < oo. Then the function y,(t)
= arg(y (¢")—z) = Imlog(y (¢")—z) is absolutely continuous and

(6) var [1.(7); <0, 2n)] < 2v%%(2).

Proof. One may join the point z with the point at infinity by a Jordan
arc y lying in C\K. Hence in the simply connected domain C\{y} there exists
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a holomorphic function log({—z), and so on (0, 2x) the function x,(7) is
well defined. Its absolute continuity results easily from the following facts:
Y (") is absolutely continuous (Proposition 3.1); ¥ (e")—z|=2a >0 on
€0, 2r); log(l14+u) = O(u) for u— 0. So it remains to prove (6). Denote by
A.(0) = {{edK; arg({—2) =0}, M,(0) the number of points in A,(6)
(possibly infinite). On account of the choice of the function log({ —z) the sets
A.(0+2jn), A,(6+ 2kn) are disjoint for j # k. Otherwise there would exist a
point (e ¢K such that arg({—=z) = 0+ 2jr and at the same time arg({—1) =
0 + 2kn; hence the function log({ —z) cannot be univalent in C\}y}. Hence for
every 0Oe <0, 2n) we get N7%(0) =) M_(0+2kn), and with respect to the

keZ
compactness of dK and continuity of arg({— z) the sum includes only a finite

number of terms, so that we can write

0 2n 2n
[ M.OVdr'(0)=Y [ M.O+2%kmn)da'(0)= [ Y M.(0+2kn)dn"(0)
- keZ O 0 keZ

= | NK(O)dn ' (0) = v ().
1]

Consequently, by hypothesis, we get

(7) | M.(O)dA'(0) =v*() < .

- X

But (cf. par example [8], p. 21)

[ M_(0)d#'(0)= | m (A)dx"'(4),
) 0
where m_(1) = #'(10; M_(0) > 2}). Since M.(0)e Nu [}, one obtains

[ m()di=Y #'(10: M.(0) > n)) = 3 A(165 M.(0) > m).
0 n=0 n=

which, by Definition — see (5) — is equal to .#'(M.), where M. is the

multiplicity system defined by the multiplicity function 6 — M. (0). Hence on

account of (7) we get #'(M.) = r™®(z) < x. According to Lemma 2.1
HEM¥) = V(M) =) < x,

which means that the inner length of the continuous function arg({—:)| 2K,
which is by definition equal to .# ' (M¥), is finite. Hence by Proposition 2.1 (i)

L, (arg({ —2): C\K) < 24 (M¥) = 207%(2) < o0,

so that by (i) of the same proposition L;(arg({—z); C\K) equals the
classical length of the curve arg(gp(e")—z), te<0, 2n), where ¢ is the
conformal mapping of D onto C\ K, which is therefore finite. Hence also the

7 - Annales Polonici Mathematici XLVI
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length of the continuous curve

1:(v) = arg(y (e") —z) = arg(p(e™")—2)

is finite. But this length is equal to the total variation of y, on <0, 2n),
whence

var [x.(1); <0, 2n)] < 2v7(z)
and (6) is proved.
THEOREM 3.1. Let K be a nondegenerate continuum not dividing C and

Sulfilling (4). Let y be the conformal mapping (1). Then for each point ze C\K
the following estimate holds:

2n

(8) J“I ieit I(eit)

0
Proof. By Proposition 2.3 one has v"*(z) < V(0K)+n. But V(K)+n
< o from (4). By (6) of Proposition 3.2 one gets

9) var [x.(1); <0, 2n)] < 2(V(éK)+mn).

But by the same proposition y, is absolutely continuous on <0, 2n) and

hence
2n

var [x,(1); €0, 2n)] = | |x;(7)l dt
0
(cf. for example [12], Theorem 8, p. 279). Because of

, d L d o
X:(T)—E‘;X:(T)—E[mlog(\/’(e ) ‘-)

- oy _ @D (e)
= [mdI log(y (¢)—2) = Im )=
a.e. on (0, 2n) one has by Proposition 3.1 (i)

2x

var [, (1); <0, 2rn)] = j ‘l

0

ieiv lﬁl (eit)

-z |

where ¥'(¢") = lim Y (Re™) ae. on (0, 2n), and from (9) we get (8).

R-1+
Now we will define in an obvious way Hardy’s class H! (C\4) as the set
of all functions ¥ holomorphic in C\4 (which means that lim y(w) exists

W — a0

and lies in C) such that

2z
[ W(Re")dt <M <o for all R> 1.
(1]
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Analogously we define h' (C\A4) as the set of all functions h harmonic in C\4
(which means that lim h(w) exists and is finite) such that

2n
[ |h(Re™)dt <M <0 for all R> 1.
0

Applying the conformal mapping w = 1/, we can easily see that e H! (C\4),
he h' (C\4), respectively, if and only if the functions @({) = ¥ (w), g({) = h(w)
lie in H'(D), h'(D), respectively. Hence from [3], Theorem 3.1, p. 34. and
Theorem 1.1, p. 2, we get the [ollowing

LemMa 3.2 (i) yeH!'(C\A) if and only if it can be represented as a
Poisson integral of its radial boundary values which exist a.e. on {0, 2n), that

is, if

2x 2n
" . 1 it .
Y (Re'%) = 1 Ie(t—0)yY(e)dr = — Re”FE Y (e")dr,
2n 2n w—e'
0 0
where
R i
w=Ren r(t " R?-2Rcost+1’

(i) he h' (C\4) if and only if there exists a measure on {0, 2n) such that
2n
h(re®) = | Og(r—0)du(7).
0

THEOREM 3.2. Let K be a nondegenerate continuum not dividing C and
Julfilling (4), and ¢ the conformal mapping (1). Let ze K. Then

(10) Im%pw;% e h'(C\4),
25 o )
(11 iulgf ‘lm%‘% dt < 2(V(0K)+ 3n).

0

Proof. First let us remark that (11) implies (3) with the constant
C < 2(V(8K)+ 3n). Conversely (3) implies (11) with the constant C. Namely,

the function :l:::bv)(wl is holomorphic in C\4, so that the function
Im ;‘:ﬁ)(wi is subharmonic in C\4 and hence integrals (3) produce a

nondecreasing function of R. The idea of the proof of Theorem 3.2 consists
in constructing the measure u, of (ii) of Lemma 3.2 corresponding to the
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function h(w) = Imﬂ W)

x(w)—z
constructed by using (8). Let e ¢K. There éxists an xe (0, 2n) such that
- = /(") (if there are many such x, we choose any of them). Fix a ¢ > 1

and consider in C\4 the function

as a weak limit for ¢— 1 of measures p,

_iwy'(w) iw
V(w)—y (o) w—ge®
Since ¥ is one-to-one in C\4 and since

iwy’ (w) R
res — = ige'" = res -,
w= 0(-"1 lp (”') - 'p (Q(" ) w= 0‘,11 w — Qe

f,« is holomorphic in C\4. We show that in addition f,,e H'(C\4).
Obviously lim f,,(w) =0. Now choose R, <g. The function w/(y(w)

Wy

—(0¢™) is continuous in the ring 1 < |w| < R, and hence there exists a
constant M(R,) < x so that for R <R,

Joa

2n 2n
| | foa(ReM d| < M(Ro)((j; W’ (Re"™)] dt +1).
0

By Proposition 3.1 (i1) we then get

2
[ foa(ReMdr < Mg, < o0 for every R > 1,
(o]

2n
because the integrals | | fo.a(R€™)| dt form a nonincreasing function of R. So
0

f,2€ H'(C\4). Hence by Lemma 3.2 (i) (w = Re®)

Joa(W) = 51”- Hg(t—9) f,.(e7)dr
s

Cl—— ™
*A

and taking imaginary parts we obtain for |w| > 1

iwyr’ (w) iw
12 Im——- - =—Im——
(12) W(w)—=: w— ge'
2n -
1 ie" ' (e") ie't

= Er_r j Iy (t—H)(lm V(€ — 1 (0e™) _eit_geia)d‘t

0

Consider on (0, 2n) the measure

_ _l_ ieit q//'(e“) B ieit
Poa =3 1 (w @)~y (oe™) & — ee‘“)""
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We have

2
gl sij |1m e V(<) .
' 2n
0

2z
| ie'™
—dt+— | Im—
V(") — ¥ (0e") 2n J ' et — ge
0

The first integral is, by (8), not greater than V/m+1. The second one is
estimated by 1. Namely, as is easily seen,

2n.

1 J ‘ ie
~ Im it ia
2r e'*—ge

0

1 )
dr = — v (pe').
2n

But v”(ge”) < 2n, as is apparent from the definition of v". Hence

(13) ”va,c:” < WT[+2.
Further, define on (0, 2n) the measure o,, in such a way that
do,, = : I ad dr.

a-a n et — ]/ Qeld
One has

_1 Im ie"
”ao,all - 21[ l IG/Q

0

dt = —v"(e"'/Q) =1.

Obviously —lw is continuous in C\4, and so we get (w = Re'9)

ld/
2n
iw 1 { ie"
— =— | JI 0)——
w—e"’/Q 2 J R (T ) t euz/Q
V]
Taking imaginary parts, we get
2z
14 g (c—0)do, . (z) = Im—"
(4 r(1=0)doyq (1) = Im efo
0

Denote u,, =v,,+0,,. We have
llbe.all < Nveall +llogall < V/m+3.

Consequently, there exists a measure y,,

(15) llpll = V/m+3,

which is the weak limit of the measures y,, for ¢ — 1+. From (12) and (14)
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we obtain
2n

" iw iw
JHR(r 0)du, 4 (t)+1m —ge"“_lmw—e"/g'

iw’ (w)

a6 Im = (™

0o

Since 1 —» IIz(0—1) is continuous on {0, 2rt), we get from (16) for g— 1+
2x

IWI/I (w) "
0
and so by Lemma 3.2 (ii)
iwy’ (u) )
Im U — eh' (C\4)

and (10) 1s proved.
(11) follows from (10) by a standard procedure by using (15).

4. Now we are in a position to pr@sent the proof of the theorem of
Section 1.

Choose ze éK. (2) implies

F;.(Z)=2— J w1 Wy (W)

yom—z"

iw|=R

for every R > 1. (17) implies for |w| < R, by analytic completion,

2r
wy'(w) [ w+e
III(W)—‘Z— J W— :(t)
o
so that Fubini's theorem gives
2r 2n
* 1 . o w+ it 'Y i
F,,(Z) - J (2_1'[1 J w W—e't dw)d#z (t) J € d”z(r)
0 Iwl=R 0

2r N
for n>1 and Fy(z) = [ du.(t). Hence, if p(z) = Z a,z", we get
N 2x

Y aF.(2) = 2] P(e")d#z(f)-f p(0)du, (),

n=0"
so that ||Tpllx = [ Tpllox < 31Iptl4llpll and with respect to (15)
I TPl < 3(V/m+3)]1pli 4-

The theorem is proved and in addition it is shown that the norm of the
Faber mapping is less than 3(V/n+3).
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