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Spectral properties of doubly commuting hyponormal operators

by J. Janas (Krakow)

Abstract. The paper describes some spectral properties of doubly commuting pairs of
hyponormal operators. A generalization of certain results of Putnam [2], II, III, is given using
the notion of joint spectrum introduced by J. Taylor [4].

I. Let T, T, be a doubly commuting pair of hyponormal operators in a
complex Hilbert space H (below we give a few examples of such pairs). In
what follows we extend several results of Putnam, proved for a single
hyponormal operator in [2], I, III, to the case of a commuting pair. Let us
first recall a known result concerning the relation between the joint spectrum
a(T;, T,) of Taylor and the joint approximate point spectrum o,(T*, T3¥).
Let S,, S, be a doubly commuting pair of operators (not necessarily
hyponormal). By the result of Vasilescu [5] (of Curto [1]), it is known that
(0, 0)¢0o(S,. S,) iff the following operators are invertible:

STS1+S;S2, Sl ST+S;Sz, SI‘S]‘}'SzS; and Sl ST+S2S§.

Hence for T;, T, we have

(0) o(Ty, T) =0, (T*, TF)

(note that TT* < T*T, s=1, 2).

Though we shall deal mainly with the pair T;, T,, we start with two
results concerning commutators of commuting self-adjoint pairs.

Let J,=J¥ s=1,2 and J,J, =J,J; (J; is bounded for s =1, 2).
Suppose that U,, U, are unitary and commute. Assume also that U, J,
=J,U, and U,J, =J, U,. Denote by max J, J, (min J, J,) the maximum
(minimum) point of a(J,-J,). We have the following theorem (this is an
analogue of Theorem 2.2.2 of [2]).

THeorRem . Let Jg, U,, s =1, 2, saiisfy the above conditions. Suppose
also that

U*J U,—-J,=D,, whereeitherD,>200rD;<0, s=1,2.
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Then

D, D,ll <(1/27*)ym(0(U,, U,))d, whered=maxJ,J,—minJ, J,.
Proof. Suppose that D, >0, s =1, 2, and
U= [ €e“dE, s=1,2.

[0.21:]2
Let

S = (4, 1) €[0, 2n]% (¢!, €*Yea(U,, U,)!.

Denote by S, = [0, 2n]*>\ S the complement of S. Let f(4) # 0 be a function

defined on [0, 271]? of class C* (k > 1) such that f(4) =0 on S. It follows
that

F(A, d) = ¥ ca@™ ™2 with ¥ |c,| < o0 and [ f(4)dE, = 0.

- @

Now we have

m.ny . § my,ny iy A1 4 Kado)
1p7%2 _ ) Hagdy tkadz
Z Cklkz Ul UZ _J. Z cklkze dEv
-my,.—m -—mi.—n

and so the above sum converges to zero in uniform topology. Hence
! k k
(D1 Dy)"*(coo+ 2, Ckyky Ui'Uy) =0,
kykg
where Z' denotes summation over all k,, k, except k, =0, k, =0.
Now, applying the Schwarz inequality we have

(1) llcoo (D3 D)2 X2 < Y Jeruyl? Dy D)2 UY U x|
kq.ko ki.ko
We also have the equality

Y UD,U* = U*'J U1 —UJ, Ul (s=1,2)

(see [2), p. 17). Therefore
> UtMuiep, p, Ul U = (Y UMD, UY)(E US2D, UY)

= (U, U™ = U, UD(UT* 0, U™ - UsmJ, UD).
Hence

Y (D, Dy)Y2 Ut US2 P2

=(J, LUt Ut x, Ut U ) —(J, J, UT U™ ' x, UT U ' )+
+(J,J,UTULx, UTUYx)—(J, J, U+ U x, U™+ U x).
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Consequently,

Y Dy D,)' 2 U U xif? < 2d- 112

and so

Y (D, Dy)'2 UL U xI|? < 2d|Ix||* (D, D, x, x).

Take a sequence x, of unit vectors such that
Dl szp_”Dl D2||xp—>0 as p— a

By the Parseval equality we have

Y leeigl® = [1f (21, 22)|*dAy dAy,  where a = 1/4n”.

ky.ky -
Putting x = x, in (1) and applying the above relations we get
Ia If(l)dln d)-z|2 “(Dy Dy x,, x,)
< [o [ 1f (W da~Ja [ (D) d2P*] [2d— (D, D, x, x)].
Passing with p to infinity we obtain
(2 |« [f(A)dA,dAy* 1D, Dyl
< [ (1S (A)N?dAy dAy—|a [ £ (A)dA]*][2d—1ID, D]
Choose a sequence f,€ C*¥ [0, 2n]* (k > 1) such that
(a) fp|s =0,

(b) f,,—»uﬁsc almost everywhere with respect to the Lebesgue measure
(denoted by m),

(© llfpll. <M for every p.

This is possible in view of the results of [3], VI. Putting f = f, in (2) and
letting p — oo we see that (2) also holds for f =y .
Since

J W3 di = | Y5 di =m(S) = 4n*—m(S),
we can write
ax||Dy Dl < [aax—(2a)*][2d—||Dy D,|]],  where a = m(S,).
Hence
Dy Dl < (1/27*)m(S)d.

The proof is complete.
As an application of Theorem 1 we obtain the following result.
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THeEOREM 2. Let A,, A, be a commuting pair of selfadjoint operators and

let B,, B, be a doubly commuting pair of operators. Suppose that the following
conditions are satisfied:

(a) AB,.—B,A,=C,, whereC,20 or C,<0,
(b) AIBZ =BzA1 and AZBI =Bl Az.
Then

IC, C,ll < (d/2 nz)m(a(A,, Az)),

where d = max(Im B,, Im B,;)—min(Im B,, Im B,).

Proof (following the ideas of Putnam [2]). We may assume that C, = 0,
s =1, 2. Denoting Im B, = J, we have (by (a))
3) A J—J A, = —iC,, s=1,2.

Note that U, = (A,—il)(A,+il)" " is a unitary operator and by (3) we can
write U,J,U¥—J, = 20*C,Q,, where Q, = (A,—il)™".

Let D, =2 Q¥C,Q, = 0. Since U, J, = J,U, for s # k (this can be easily
derived from our assumptions), we can apply Theorem 1.

Hence

() m(a(Uy, Uy) = (2n%/d)-||Dy D,|l.
Dy Dyl =IQF C, @, 03C,Qll > sup (QFQ3C,C,0,Q:x, %)

x|l =1

2|IC, Cyll inf [IQ,Q,x||%

lxll=1
By the definition of Q, we can write (4, = | A, dE) Q, = [(4,—i)~ ' dE, and so
191 Q2 xl1? = (L +[[A{1%) 71 IQa Xl1* = (1 +114411%) ™ (1 +11 4013~ ]|

The above estimations and (4) prove that

&) m(a(U;, Uy)) = B8 n?/d)||IC, Coll (1 +114,11)) (1 + 11451151~
If
(€, ) = (ji :, jz:), 0 < @, <2n, A,€R,
then
de,do, = 4[(1+A})(1+A9)] ' dA, dA,.
Hence for

S = :(‘Pl, ®2), (ewl, ewz)ed(uh Uz)}



Spectral properties of doubly commuting hyponormal operators 189

we have

m(a(Uy, Up))=m(S)=4 | [A+ADA+iD1""dA, d4,

aldg.A

<dm(o(A4,, A,).
A, = tA,. Since tC, = A, B,— B, A,, we obtain (by (5))
Ay) =4t m(o(A4,, 4,))

8n? _
= T“Cl Coll (2 [(L+1[lA, 1) (1 +[A4,1]7 1.

For any r > 0 let

4m(a‘(ff,,

Dividing the above inequality by r? and letting t -0 we get
2n?
m(c(A4,, 4,)) > 7||C1 C,lh.

The proof is complete.

Now we give an appllication of Theorem 2 to a doubly commuting pair
of hyponormal (cohyponormal) operators. Namely, we have the following
result (cf. [2], Theorem 2.2.1).

THeoreM 3. Let T,, T, be a doubly commuting pair of hyponormal
(cohyponormal) operators. If T, = H,+iJ, and T* T,— T, T* = D,, then

1Dy Dol < @4/m*) |1y o)l m(a (Hy, Hy)).
Proof. By the above assumptions and notation we have
HiJ —-iJ,H = —-C,, where D, = 2C,.
According to Theorem 2,
(1/4)||D, D,|| < (d/2n*)m(a (H,, H),)),
where d = max(J, J;)—min(J, J,). But d < 2||J,J,|| and so
(6) 1Dy Dl < (4/m*) |1y Il m(o (Hy, Hy)).

The proof is complete.
Remark. By symmetry we also have

1Dy Dol < (/%) ||Hy Holim(a (U, J5)).

Now we give an application of Theorem 3. However, first we need to
generalize the well-known result of Putnam: if T = H+iJ is hyponormal,
then o (H) = pr,a(T), where pr, denotes the projection onto the real axis.
See [2], Theorem 3.4.1.

THeoReM 4. Let T,. T, be a doubly commuting pair of hyponormal
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(cohyponormal) operators. Denote by pr,: C? — R® the projection pry(z,, z,)
=(x,, X;), where z, = x.+iy,. Then

pr(o(T,. ) =0(H,, H,).

Proof. (a) First we prove the inclusion pr,(o(Ty, T5)) 2 6(H,, H,). Let
(Ay, 4;)ea(H,, H,). Choose a sequence |f,] of umit vectors such that

(A—H)f,—0, s=1,2.
Then

J(H,—-2)f, -0, s=1,2.
Since
(Hy—4)J,—J (H,—A) = —iC,, where 2C,=D,=[T*, T.] >0,
we have
(fur (Hy =20 I f) = (fon J(H =2 ) = —illICS2 £l =0, s=1,2.

Thus ||IC,fll =0, s=1,2, and so (H;—4)J,f,—0, s=1,2. But J H;
=H.J, for t #s and J,J, =J,J,; identifying J,f, (s =1, 2) with the
previous f,, we see that (H;—4,)J,J, f — 0 for every s, . Similarly, for any
polynomial p(J,, J,), (H,—A)p(Jy, J5) f,—0, s=1, 2. Now if @(4,, 4,) is
any continuous function on R? then, approximating @(J,,J,) by poly-
nomials in J,, J, we have

(Hi—A)®(J,,.Jy)f,—0, s=1,2.

Let E be the spectral measure of J,. J,, ie. J, = | Ai,dE. Assume that
a(J., J,) clc, dlx[c,d] =4,. We have ||E(Ad)fli=1, n=1,2,...
Dividing A, into the four equal squares we see that for at least one of these
squares, say 4,, the inequality ||E(4,) f{?|| = 1/4 holds for all n, where | f,!®]
is a subsequence of |f!"] =!f,]. Continuing, we produce a sequence of
squares 4,, 4,, ... and a double-indexed sequence of vectors ! /%! where
Moy © A, m(A) =(d—c)/2%)?, (f%* D) is a subsequence of !|f®), and
HE) 2 = 14", k,n=1,2,3,... Let (4}, A3) be the limit point of
(ch, c,(z), where

Ak = [(ckl7 ckz)v (dk17 ck2)7 (dkl) ekz)a (Cklr ekz)]'
Take y, =0 (y, > 0).
Denote by 4, the y,-neighbourhood of 4,. Choose a sequence @, of
continuous functions on R? such that
1, xed4,,
@, (x) =< between 0 and 1, xed,\4,,
0, xeR?*\4,.
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Next, define the sequence

. ¢R(J1’J2)fn(”
I =@ (T, T £

Since E(w)g, =0, for any Borel set @ such that wnd, = 0‘we can write
11— 20) il = [ [ (21 = 2D d(Eganr )
S(dkl_ckl-i-yk)z’ n=l,2,...,
I(J2—A3) gkn“z = ” (Az—l'z)zd(Eg,,,, Gin)

<(9k2‘0k2+7k)2, n=1’ 21---
Hence there exists a subsequence n, such that for x, = 9in, W€ have

IH,—4) il =0, [I(J,—4)x ]l -0, s=1,2.

This completes the proof of inclusion (a).

(b) The opposite inclusion is immediate.

Let (z, z;)e0,(T*, T), where z, = A +iy,. Writing R, = T,—z,1, we
have

‘RSRS*=(Hs_is)2+(‘]_\_,u5)z+csn CSZO. S=1,2.

By our assumption there exists a sequence f, (||f,/| = 1) such that
((R; RY+ R, R%) f,, £,) — 0.
Hence

(Hy =2 +(Hy =20 £, £3) = WH = A) Sl +II(Hz = 22) £l = 0,
and so (4,, 4,)ea(H,, H,).
This completes the proof of the opposite inclusion and of the theorem.

Now we are ready to formulate a theorem which generalizes Theorem
3.7.1 of [2]. This is our main application of the previous results.

THEOREM 5. Let T,, T, be a doubly commuting pair of hyponormal
(cohyponormal) operators. If T, = H,+iJ, and T* T,— T, T.* = D, then either
(a) each of the sets a(H,), 6(H,), ¢(J,), a(J,) contains an interval

or

(b) my (0 (T, T5)) = n?|ID, D,||; here m, denotes the Lebesque measure in

Proof. We follow the main ideas of [2] and combine them with
Theorems 3 and 4. Recall that

o(Ty, T) =0 (Ti*, T}).
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Let H,= [ A, dE. We may assume that o(H,) does not contain any
interval. If o(H,, H,) < Int((a,, ;] %(2,, B;]) = 4, then

(Z) dAne(H,, Hy) =Q.

Let 4 =(a,, b;] x(a,, b,] be an arbitrary rectangle for which (Z) is satisfied.-
Write J2 = E(4)J,E(4) and H? = E(A)H,E(4). Let (4, 4,) be the “middle”
point of 4. Since H,J,—J H, =iC,, where 2C, = D,, we have

(H — p) I = JJ(HI - p) = iC].

Now it is easy to check that T? = E(4) T, E(4) satisfy the assumptions of
Theorem 3. Thus

1D{ D3Il < (4/m*) (H{ = py) (H3 = pa)ll-m(a (JT, J3).
Hence we can write
||(D D,)'?E(4)x||* = (D, D, E(4) x, E(4)x) = (E(4) D, D, E(4) x, E(4)x)
= (D1 D3 E(d)x, E(4)x) < ||D{ D3 E(4) x| - | E(4) ]|
< @/m)(HT = uy) (H3 = po)ll-m(a (J1, J3)) I E(4) x||.

But
I(HT = p1) (H3 = po)ll < m(4)/4,
and so
(M 2n|(Cy C)' 2 E(A) x|| < [m(A)m(e (1, ID)]V/?-|E(4) X}

We want to estimate m(4)m(a(J{, J4)), but first we observe what follows.
I (a, o)ec(J2,J9), then by Theorem 4 there exist (,,4,) and x,
= E(4)x, (lIx,| = 1) such that

(8) (H—1)x,—0, s=1,2,
(9) E(A)(Js_ﬁs)xn_’oa S=l, 2.
We shall prove that

(10) J,— i) x,—»0, s=1,2.

Since ({,, 1,)ea(H4, HY), then (i, 4,)e A (the closure). On the other hand,
dAna(H{, H) =@ (because Jddno(H,,H,)=Q and o(H?, H)
co(H,, H,)) and so (4,, 4,)elnt 4.

Hence, putting y,, = (J,— f,) x,, we get (by a reasoning similar to that in
the proof of Theorem 4)

WHy =) yull? +(Hy = 2) yull 2 20, s=1, 2.
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But (A, £,)elInt 4, so that ||[E(R*\A4)y.ll 0. By (9) also ||E(4)yull >0,
s=1,2, and (10) must hold. Now we can estimate m(d)ym(o(J{, J9).
By Theorem 4 we know that

oy, J) Spr,(o(Th, To),

and thus also
(11) a(J{, J9) € pr,(a(Th, To)).
Let

Q= {(xl’ Vi, X2, yZ)eR“t, (xlv xZ)EA‘}'
Divide Q into at most countably many parallelepipeds P;. Denote by P, any
P; which has a non-empty intersection with o (7;, T;). It is clear (by (11)) that
(12) m(@)m(o (1, J9) < 3, ma(P) =S4

here m, stands for the Lebesgue measure in R*. By our assumption (concern-
ing o(H,)) we can find a partition of 4 into rectangles 4, such that
4, na(Hy, Hy) =@ for all k. Thus by (12) and (7) we have

2n|[(Cy C)' 2 E(4) xi| < (S4) " IIE(40) Xl
Hence, by the Schwarz inequality,
2nl(C, C'V2 x| < 27:; I(Cy Cz)l/ZE(Ak) x| < (‘é SA,‘)”’(; IE(4:) xl1?)72.
Thus | _
(13) 2m?*(ICy Coll < Zk: S

e

Since our division of 4 into 4, and of the corresponding €, (see the
definition of Q) into P, is quite arbitrary (because of the assumption
imposed on a(H,)), one can check that

m(e(Ty, T)) = inf Y S,

PlEsAk k
where only those partitions 4, of A are allowed for which
4, no(H,, H)) = Q.

Inequality (13) and the above remarks finish the proof.

We conclude our paper with a few examples of doubly commuting
hyponormal operators.

II. Concluding remarks and examples. Although we have stated the
results of this paper only for commuting (doubly commuting) pairs of

5 — Annales Polonici Mathematici XLIV. 2
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operators, it is easy to extend them to tuples of several operators. This is
immediate for Theorgms 1, 2 and 3 and less obvious for the rest.

Before we proceed to examples note that one can derive from Theorem
5 Putnam’s result for a single hyponormal operator as follows. Let T be a
hyponormal operator in H. Define

T,=T®I, T,=IT on H®H.
If
D=[T* T]=T*T-TT*
then
D, =[T¥ T,]=D®I, D,=[T# T,]=1®D.

But o(T,, ) =a(T)xa(T), by the result of [6] (or as can be checked
directly).
Hence by Theorem 5 (b) we have

my(o(Ty, Ty)) = (m(a(T))* = 72|ID, D,l| = n*|ID®D|| = || DI},
ie.
m(a(T)) > n||D|.
A similar reasoning (applying (a)) gives the second part of Putnam's result.

Now we shall give a few examples of doubly commuting hyponormal
operators.

ExampLE 1. Let Ae L(H), Be L(K) be two arbitrary hyponormal oper-
ators. Suppose we are given N, e L(K), N, € L(H) two normal operators such
that N; A = AN,, N, B = BN,. Define the operators

T, = A®N,, T,=N,®B.

It is clear that T;, T, are hyponormal operators in H®K, and by Fuglede’s
theorem they doubly commute.

ExampLE 2. Let A, B, C, D be operators in H. Assume that they satisfy
the following conditions:

(@ NlAxI[ = I1B*xll, |IBx|| = |[4*x]l, [Cx|l = [|[D* x|, [IDx]| = |IC* x|l
(b) CB=AD, DA =BC, B*D=CA*  A*C = DB*.
Then the operators

0 4 0 C
S=(BO)’ T=(DO) on H®H

are both hyponormal and doubly commute.
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ExampLe 3. Let (2, p) be a measure space with a finite measure p.
If Fi: Q- L(H(A), i =1, 2, are essentially bounded functions, F, (1), F,(4)
are hyponormal and doubly commute (u-almost everywhere), then
| ®F,()du(d) and | @F,(A)du(4) are also hyponormal in | @H(A)du(A)
and doubly commute.
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