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The punctured plane:
alternating projections and I?-angles

by M. SKwARCzYNsKI (Warszawa)

Abstract. The paper exploits further the possibilities contained in the method of alternating
projections [9], [12]. We apply Fourier analysis to study I*-angles in multiply connected domains.

The method of alternating projections in various forms appears in the
works by Schwarz, von Neumann, Wiener, Kaczmarz and others. Its fun-
damental role in the theory of holomorphic functions was discovered more
recently (1983) in [9]. It permits us to describe the Bergman projection [1] in
a domain D = AUB in terms of (more elementary) Bergman projections in
A and B. An angle between two corresponding subspaces of IZ(D) is called the
I?-angle between A and B and is denoted by y(4, B). By construction, y(4, B) is
invariant under biholomorphic mappings. It is a nice surprise that in many
cases the alternating projections procedure can be carried out by explicit
analytic culculations, and the value of the corresponding I?-angle can be
determined. Such investigations are greatly facilitated by fundamental relations
between Fourier analysis, Laplace transforms and Bergman theory described
by the author in [11], [12] and based on the I?-type formulation of the
Laplace transform due to Dzhrbashyan [2], [3], and Genchev [5], [6]. These
developments point out to a powerful extension of Fourier analysis as
envisaged by Mackey in [8] p. 309: Going into the complex domain permits to
extend Fourier analysis beyond its normal range. Striking a philosophical note,
one is tempted to say that we are witnessing here a manifestation of both the
vitality and unity of mathematics, and to suspect that these qualities are
essential for the recognized ability of mathematics to explain the empirical
phenomena. In more ordinary terms, we may say that the present article
represents a conscious step in a longer research program. We are concerned
with the punctured plane D = C\{0} considered as a union D = AU B, where

N A={zeC; z¢[0, )}, B={zeC; z¢(—o0,0]}.

The domain D is multiply connected, and we shall use this example to
demonstrate that the Genchev transform is useful to study the I*-angles not
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only in simply connected, but also in multiply connected domains. We shall
describe in detail the relevant alternating projections procedure, and we shall
prove that the ?-angle y(4, B) for (1) is equal to zero.

1. Preliminary remarks. As usual, the space of all functions holomorphic
and square integrable in a domain W < C is denoted by I? H(W). Given
a biholomorphic mapping ¢: U — W, the problem for I? H(W) can usually be
restated as a problem for I? H(U), with reference to the canonical isometry
o*: ZH(W)-I?H(U) given by (¢* /)z) = f(¢(2))¢'(2). It is easy to verify the
commutativity of Diagram 2, provided that Diagram 1 is commutative.

Wy = 2 " HW,) S e PH(W)
?2 / N /
7] 2H(U)
Diagram 1 Diagram 2

Assuming that U equals 4 or B, we shall use the mapping ¢(z) = ilnz to
map U onto a tube in the complex plane. Different choices of the branch of
logarithm will yield different mappings ¢, and ¢,. In this particular case, « is
a translation and (since «’' = 1) the mapping o* is given by the formula

@ (@* )W) =1 (w(w):

Now, let us consider a tube T = {zeC; Reze(a, b)} and a function f € > H(T).
The Genchev transform of f is independent of x = Rez and defined by

(3) Gf(t) = ez-ux ]? ez"'"’f(x-}-iy)dy

which describes an element
Gre (R, (e™* " —e™*)(4nt).

By a fundamental result of Genchev [5] (simplified in [11]) the correspondence
/G, defines a unitary isomorphism of IZH(T) onto the space

L’(R, (8_4'“‘—-8—4"”)/(41[[)).

Assume that g, (w) = g,(w+c) where g, e 2H(T+c). Then it is easy to
verify [11] that the respective Genchey transforms G,, and G,, are related by
the formula

4) Gn(t) = g~ 2me Goz(t)'

When ¢ = 27 it will be convenient to say that the transform G,, is obtained by
pulling G, to the left. As shown by (4) this amounts to multiplying G,, by

q= e—4n1t
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When ¢ = —2n, we shall say that G, is obtained by pulling G,, to the right.
Again (4) shows that this is equivalent to multiplying G,, by

- 2
q 1=e4"'.

2. The proof of (A4, B) = 0. It is easy to see that the only function which is
I?-holomorphic both in 4 and B (and therefore I?-holomorphic in the
punctured plane) is the zero function. Therefore, the general expression for the
I?-angle in D = AUB (see [12]),

(4a) cosy(4, By= sup |IP3fI/IS1,

SELZH(AN(0}
SLL2H(D)
takes in the considered case a simpler form

(4b) cosy(4, B)= sup ||P,fII/IfIl.
SaLEH(AN(0)

Here P, is the Bergman projection in B and y(A4, B)€[0, n/2). The domain
A is mapped biholomorphically by ilnz (In(—1)=in) onto the tube
Rewe(—2m, 0). Denote by h the Genchev transform of that function in the

tube which corresponds to the function feI? H(A)\{0} under the canonical
isometry. To compute ||Pyf||*> we use the decomposition f =f, +f_., where

f+ =f'x1mz>0i f— =f'lez<0'

The main idea is to rewrite the present problem as a problem for tubes.
A halfplane contained in the plane with removed radius is then mapped onto
a tube of width = contained in a tube of width 2x. Here we can use the known
expression for endogeneous operators in terms of the Genchev transform.

The images of several consecutive sectors in the punctured plane under the
mapping w = ilnz are shown in Fig. 1.

Note two images of B under “adjacent” branches of ilogz, which appear in
Fig. 1c. The function P, f, which we now want to describe, is the sum of Py f,
and Pyf_. It is easy to describe the image of Py f, in the tube II (over
(—m, ), and the image of P, f_ in the tube III (over (—3x, —)) in terms of
their Genchev transforms h;; and hyy;. In fact the first function results from an
endogeneous operator in the tube II by applying it to the image of f, = fiim:> 0,
while the second function results from an endogeneous operator in the tube III

Fig. l1a
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Ami

-/
Fig. 1b

I=iln 8 I=/In8

|

I=/InA

Fig. lc

by applying it to the image of f_ = fim.<o. Therefore by Theorem 6 and
Corollary 4 of [12]

q 1 —an?
hyyy=h——, hy=h— = g~ 4n),
11 I+q 11 1+g (g=¢ )

We shall find next the image of P, f._ in the tube II in terms of its Genchev
transform h'!, using the knowledge of the corresponding image in the tube III.
By the previous remarks h'' is obtained by pulling h;;; to the right; more
precisely,

W' =g hyy = he 1/(1+q).
The sum
hir+h" = h-2/(1 +q)
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is the Genchev transform of the image of P, f = P, f, + P, f- in the tube II
Therefore, by the Genchev—Dzhrbashyan theorem

@ 2 ze-4n(—1‘|)t_e-4-n(n)l ® 4 q—l_q
P 2 o h: dt = hi? .
P2l _'L 14g¢ 4nt _Ll | (1+q)?* 4nt dt
On the other hand,
-] —4n(-2ap = 4n(0)t 4] -2
22 [ |8 —¢ R EAEY Ml
A7 = T el

Now, by the usual argument (see [12]) we conclude that cos®y(4, B)is equal to
the maximal value attained by the ratio of integrands. Therefore we want to
find the maximum of the function

4 q'-q 44
1+9?g7> -1 (1+g*
This maximum equals 1 and is attained at ¢ = 1. This completes the proof that
(4¢) y(4, B) =0.

3. Alternating projections. Let us recall the procedure of alternating
projections in a domain D = AU B (see also [10]). For f e I?(D) it describes the
Bergman projection Py, f € [ H(D) as the I?(D)-limit of the following sequence.
The first term f, is obtained by modifying f on the set B, by replacing the values
of f by the values of P f, the Bergman projection of f'in B. Then f, is obtained
by modifying f; on A, by replacing the values of f; by the values of Py f, the
Bergman projection of f; in 4. Next f, is modified over B to yield fj, f; is
modified over A to yield f,, and so forth. When D is the punctured plane we
have I?H(D) = {0}, hence f,, n =1, 2, ..., converges in I?(D) to 0. We can now
give a more detailed description of this procedure. With no real loss of
generality we may assume that f € I>(A4), and that 4 is the Genchev transform of
the image of f in the tube I (over (—2x, 0)). We have already seen that the
image of f; = Py f in the tube II (over (—m, m)) has the Genchev transform
equal to

(5) hy =h-2/(1+¢q).

Now we want to consider f, = P, f,, and the Genchev transform h, of its
image in the tube I (over (— 2=, 0)). To find h, we need to carry out a reasoning
analogous to the one which was already presented in Section 2. The role of Fig.
Ic is now played by Fig. 2.

To describe P, f{ and P, f| we study the Genchev transforms h;y and h,
of their images in the tubes IV (over (0, 27)) and I (over (—2r, 0)). Again, by
Theorem 6 and Corollary 4 of [12],

g€(0, o).

1 —4n
h'=h1‘l-‘|1-q’ hw=h1'm (q=e42').
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Fig. 2

We find next the image of P, f{ in the tube I (or rather the corresponding
Genchev transform h') using the knowledge of the image in the tube IV.
According to remarks in Section 1, the transform A’ is obtained by pulling
hry to the left; more precisely,

The sum
.4
! 1+q (1+49)*
is the Genchev transform of the image of P, f, = P, f{ +P,f{ in the tube L
Since f, = P, f, we obtain by the Genchev—Dzhrbashyan theorem

hy+h' = hy-

(44)2 —4n(—ny _ e—dm(x)l
(1+4g)* 4nt

An obvious induction now vyields

dt.

02 = I L7

Ul = - 2k gén?t _ - dn
2] f || [(1+ )2] Int dt.

Now the obvious inequality

4
0< 1 <1 for almost all teR

(1+9)?
together with the Lebesgue dominated convergence theorem show that
If2ell*, k=1, 2, ..., converges to zero. This implies that || LG, n=1,2,.

converges to zero (smce by construction the latter sequence is nomncreasmg)
Thus P,f =0, as claimed.
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4, The question of stability. Let us assume that D = 4UB and
(6) D,=A,UB,, seS,
is a family of domains such that in some specified sense of convergence
D,-D, A,—-A, B,—B,
as s—s,. If

lim y(4,, B,) = y(4, B)

$—*so

we say that the pair (4, B) is stable with respect to the family (6), otherwise it is
unstable. That unstability can in fact occur was shown by Jakébczak and
Mazur [7]. In the present section we shall be concerned with a family (6) where
D,, se(0, o), is the complex plane without the closed segment [—s, s];
furthermore,

(6a) A, ={zeC; z¢[—s5, 0]}, B,={zeC; z¢(—0,s5]}, s€e(0, ).

We shall show that y(A,, B) = 0 for all s; this obviously implies that the pair
(1) is stable with respect to the family (6a) when s converges to 0. We begin with
some auxiliary results:

LEMMA 1. The I*-angle y(A4,, B,) is independent of s€(0, c0).

Proof. This is obvious in view of the fact that I*-angle is invariant under
biholomorphic transformations.

LemMA 2. For every ¢ > O there exists f € I? H(A) such that || f|| =1 and
lPpfll > 1—e.

Proof. In view of (4b) the above statement is equivalent to (4c).
LeMMA 3. For every feI?(C) the inequalities
™ IPs, f~Ppfll <e,
(8) |Pp,/—Ppfll <&,
are valid for all sufficiently small s. (Note that Py, f=0.)
Proof. This follows from D, » D, B, » B and Theorem 4 in [10].
Now we are prepared for:
THeOREM 1. For every se(0, o0)
y(4,, By = 0.

Proof. Let ¢ be an arbitrary number in (0, 4) and let f € [? H(A) be as in
Lemma 2. Assume that s is so small that (7) and (8) are valid. Let us introduce



300 M. Skwarczynski

fi2) =f(z—s). Then || f ]l = 1, f.e I? H(A,). Moreover, we may assume that s is
so small that

) If—fll <e.
(A proof of (9) can be found in [4], p. 15.) Note that (8) and (9) imply
(10) 1Py, fill < IIPp, fII +1Pp,(fi—=1 < 2e.

Similarly (7) and (9) imply
(11) "Pn,fs" = ”Pn,(fs"f)+(Pn.f_Pnf)+P3f||
2 \Pp Sl =1Pg,(fs—/ N —iPg, /[~ Py fll > 1—3e.

The function f; is not necessarily orthogonal to I* H(D,), therefore we introduce
the function f¥*:=f,—Py_f,. In view of (10) this is a “small” modification.

By (11)
1Py, f21l Z ||1Pg, Ll =[P, Pp, £l
= ||Pg, fll=IPp, fll > 1 —3e—2¢ = 1—S5e.
Moreover,
IS = 1 4I1=11Pp, fill > 1=2¢,  [IfEl < Al +11Pp, fill < 1+ 2e.
This implies that f*eI? H(A)\{0}, is orthogonal to I?H(D,) and

|1Pg, SN 136
IFE ™ 14+2¢

Therefore by (4a) for all sufficiently small s
cosy(A,, B, = (1 —5¢)/(1+ 2¢).
By Lemma 1 this inequality is valid for all s. When ¢ approaches 0 we see that
cosy(4,, B, =1,

Hence the proof is complete.
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