On the approximation of continuous functions by solutions to partial complex differential equations

by Wolfgang Tutschke (Halle, G.D.R)

Franciszek Leja in memoriam

Abstract. Let G be a bounded domain in the complex z-plane, z = x + iy and $\bar{z} = x - iy$. Denote by $\mathfrak{C}_{R}(\bar{G})$ the space of all real-valued functions defined and continuous in \bar{G} . Analogously the corresponding space of all complex-valued functions is denoted by $\mathfrak{C}_{C}(\bar{G})$. Further, by $R[X_1, \ldots, X_n]$ and $C[X_1, \ldots, X_n]$ are denoted the rings of all polynomials in X_1, \ldots, X_n , where their coefficients are real and complex, respectively. Then the Weierstrass-Stone theorem (see, for instance, Aleksandrov [2]) states that R[x, y] is dense in $\mathfrak{C}_{R}(\bar{G})$ and, analogously, $C[z, \bar{z}]$ is dense in $\mathfrak{C}_{C}(\bar{G})$. On the other hand, the function g defined by g(z) = z is holomorphic. The aim of the present paper is to deduce sufficient conditions under which solutions to general partial complex differential equations generate rings which are dense in $\mathfrak{C}_{C}(\bar{G})$.

1. Approximation of continuous functions by given solutions. Let g be continuous and univalent in \bar{G} . Then $\operatorname{Re} g(z_1) \neq \operatorname{Re} g(z_2)$ or $\operatorname{Im} g(z_1) \neq \operatorname{Im} g(z_2)$ for any two points different from each other. Thus the Weierstrass-Stone theorem implies that $R[\operatorname{Re} g, \operatorname{Im} g]$ is dense in $\mathfrak{C}_R(\bar{G})$. Therefore the following lemma holds:

LEMMA. The ring $C[g, \bar{g}]$ is dense in $\mathfrak{C}_{c}(\bar{G})$.

Example. Let $w = g_0(z)$ be the basic homeomorphic solution of the Beltrami equation

$$\frac{\partial w}{\partial \bar{z}} = q(z) \frac{\partial w}{\partial z}$$

in the whole plane, $|q(z)| \le q_0 < 1$ (cf., for instance, Ahlfors [1] or Vekua [6]). Then every solution of (1) may be represented as a superposition $\Phi \circ g$, where Φ is holomorphic. Since $\Phi \circ g_0$ is univalent iff Φ is univalent, the following assertion results from the lemma:

For every holomorphic Φ univalent in the image of \bar{G} defined by g_0 the ring $C[\Phi \circ g_0, \overline{\Phi \circ g_0}]$ is dense in $\mathfrak{C}_{\mathbf{C}}(\bar{G})$.

362 W. Tutschke

Now regard the partial complex differential equation

(2)
$$\partial w/\partial \bar{z} = F(z, w, \partial w/\partial z),$$

where the right-hand side fulfils the Lipschitz condition

$$|F(z_2, w_2, h_2) - F(z_1, w_1, h_1)| \leq l(|z_2 - z_1|^{\lambda} + |w_2 - w_1| + |h_2 - h_1|),$$

where λ is a given Hölder exponent, $0 < \lambda < 1$. This condition ensures that the superposition $F(\cdot, w, h)$ is Hölder-continuous with exponent λ in \overline{G} if w = w(z) and h = h(z) are Hölder-continuous with the same exponent. Let w = g(z) be a given solution of (2). If T_G and Π_G are the well-known double-integral operators with the singularities $1/(\zeta - z)$ and $1/(\zeta - z)^2$, respectively (cf. Vekua [6]), then

(4)
$$\Phi = w - T_G F(\cdot, w, \partial w/\partial z)$$

is holomorphic and $\partial w/\partial z$ satisfies the singular integro-differential equation

(5)
$$\partial w/\partial z = \Phi' + \Pi_{\mathbf{G}} F(\cdot, w, \partial w/\partial z).$$

The norm in the space of functions Hölder-continuous in \overline{G} is denoted by $\|\cdot\|$. The norms of operators T_G and Π_G in the space of Hölder-continuous functions are denoted by $\|T_G\|$ and $\|\Pi_G\|$, respectively.

Suppose that the holomorphic function Φ fulfils the condition

(6)
$$\inf_{G} |\Phi'| > (1 + ||\Pi_{G}||) ||F(\cdot, w, \partial w/\partial z)||.$$

Taking into consideration relations (2) and (5) from the last inequality, one easily gets

(7)
$$|\partial w/\partial z|^2 - |\partial w/\partial \overline{z}|^2 > 0$$

such that the given solution w = g(z) defines a locally univalent orientable mapping of \overline{G} into the complex plane. Let φ be a uniformizer of the Riemann surface defined by the given solution w = g(z) (concerning the uniformization of Riemann surfaces see Nevanlinna [4]). Then the composite function $\varphi \circ g$ is globally univalent in \overline{G} . Applying the lemma we prove the following theorem:

THEOREM 1. Let w = g(z) be a given solution to the differential equation (2). Suppose that the holomorphic function Φ that corresponds to the given solution w = g(z) in the sense of (4) fulfils inequality (6). Then $C\left[\varphi \circ g, \overline{\varphi \circ g}\right]$ is dense in $\mathfrak{C}_{\mathbf{C}}(\overline{G})$.

Example. In view of (4) in the case F=0 the solutions of (2) are identical with holomorphic functions Φ . Conditions (6) is fulfilled iff $\Phi' \neq 0$ everywhere in \overline{G} .

2. Construction of solutions by which continuous functions can be approximated. Let Φ be a given function continuous in \overline{G} and holomorphic

in G. Regard the operator defined by

(8)
$$W = \Phi + T_G F(\cdot, w, h), \quad H = \Phi' + \Pi_G F(\cdot, w, h).$$

If (w, h) is a fixed point of this operator, then w turns out to be a solution of the differential equation (2). Thus operator (8) allows us to construct a mapping between holomorphic functions and solutions of the differential equation (2). In the space of all Hölder-continuous pairs (w, h) we define a bicylinder \mathfrak{D} by

$$\mathfrak{D} = \{ (w, h): ||w - \Phi|| \le d_1, ||h - \Phi'|| \le d_2 \},$$

where d_1 , d_2 are certain positive constants. In order to construct fixed points of the operator defined by (8) we will investigate its behaviour in the bicylinder \mathfrak{D} . Accordingly, we suppose that the right-hand side F(z, w, h) of (2) fulfils the Lipschitz condition (3) in the bicylinder \mathfrak{D} . Further we assume that the right-hand side F(z, w, h) fulfils the Hölder-Lipschitz condition

$$(9) ||F(\cdot, w, h) - F(\cdot, \widetilde{w}, \widetilde{h})|| \leq L_1 ||w - \widetilde{w}|| + L_2 ||h - \widetilde{h}||$$

in \mathfrak{D} . Denote $||F(\cdot, \Phi, \Phi')||$ by \tilde{M} . Then for $(w, h) \in D$ the estimate

$$||F(\cdot, w, h)|| \le ||F(\cdot, w, h) - F(\cdot, \Phi, \Phi')|| + ||F(\cdot, \Phi, \Phi')||$$

$$\le L_1 d_1 + L_2 d_2 + \hat{M}$$

holds. Using this estimate, one easily gets the following results on the operator defined by (8):

(a) It maps I into itself if

(10)
$$\|\Phi\| + \|T_G\| (L_1 d_1 + L_2 d_2 + M) \le d_1,$$

$$\|\Phi'\| + \|\Pi_G\| (L_1 d_1 + L_2 d_2 + M) \le d_2.$$

(b) It is contractive if

(11)
$$||T_G||(L_1+L_2)<1, \quad ||\Pi_G||(L_1+L_2)<1.$$

Provided that inequalities (10) and (11) are fulfilled the Banach fixed-point theorem leads to the solution looked for. This solution w is uniquely determined in \mathfrak{D} .

Additionally, assume that the given holomorphic function fulfils the inequality

(12)
$$\inf_{G} |\Phi'| > (1 + ||\Pi_{G}||)(L_{1} d_{1} + L_{2} d_{2} + \tilde{M}).$$

This inequality implies that the constructed solution w = g(z) fulfils inequality (7). Therefore the solution w defines a locally univalent mapping of \bar{G} into the complex plane. Once again using a uniformizer φ of the resulting Riemann surface, we find that the superposition $\varphi \circ g$ turns out to be

univalent. Applying the lemma, one gets the following theorem for right-hand sides F(z, w, h) fulfilling inequalities (3), (9), and (11):

THEOREM 2. Let Φ be a given holomorphic function that fulfils inequalities (10) and (12).

Then the ring $C[\varphi \circ g, \overline{\varphi \circ g}]$ is dense in $\mathfrak{C}_{C}(\overline{G})$, where w = g(z) is the solution of (2) generated by Φ .

Connections between L_1 , L_2 , M and d_1 , d_2 may be discussed in the some way as in [5].

References

- [1] L. Al'fors, Lekcii po kvazikonformnym otobrazheniyam, Moskva 1969 (translation from Russ.).
- [2] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obshchuyu topologiyu, Moskva 1977.
- [3] E. Lanckau and W. Tutschke (eds.), Complex Analysis. Methods, Trends, and Applications, Berlin 1983.
- [4] R. Nevanlinna, Uniformisierung, Berlin (Göttingen) Heidelberg 1953.
- [5] W. Tutschke, Partielle Differentialgleichungen. Klassische, funktionalanalytische und komplexe Methoden, Teubner-Text zur Mathematik, Leipzig 1983.
- [6] I. N. Vekua, Obobshchennye analiticheskie funktcii, Moskva 1959.

SEKTION MATHEMATIK DER UNIVERSITÄT HALLE HALLE, DDR

Reçu par la Rédaction le 15.12.1983