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Abstract. Let G be a bounded domain in the complex z-plane, z = x+iy and Z = x—iy.
Denote by Gn(G) the space of all real-valued functions defined and continuous in G.
Analogously the corresponding space of all complex-valued functions is denoted by C(G).
Further, by R[X,,...,X,] and C[X,,..., X,] are denoted the rings of all polynomials in
Xi,..., X,, where their coefficients are real and complex, respectively. Then the Weierstrass—
Stone theorem (see, for instance, Aleksandrov [2]) states that R[x, y] is dense in €a(G) and,
analogously, C[z, z] is dense in €,(G). On the other hand, the function g defined by g(z) = z is
holomorphic. The aim of the present paper is 10 deduce sufficient conditions under which
solutions to general partial complex differential equations generate rings which are dense in

Cc(G).

1. Approximation of continuous functions by given solutions. Let g be
continuous and univalent in G. Then Reg(z,)# Reg(z,) or
Img(z,) # Img(z,) for any two points different from each other. Thus the
Weierstrass-Stone theorem implies that R[Reg, Img] is dense in Gx(G).
Therefore the following lemma holds:

LemMa. The ring Clg, ] is dense in €c(G).

ExaMPLE. Let w = go(2) be the basic homeomorphic solution of the
Beltrami equation

ow ow
(1 =@

in the whole plane, [g(2)] < go <1 (cf, for instance, Ahlfors [1] or Vekua
[6]). Then every solution of (1) may be represented as a superposition @og,
where & is holomorphic. Since ®og, is univalent iff & is univalent, the
following assertion results from the lemma:

For every holomorphic ¢ univalent in the image of G defined by g, the

ring C[Pog,, Pogo] is dense in Cc(G).
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Now regard the partial complex differential equation
(2) ow/0Z = F (z, w, 0w/0z),
where the right-hand side fulfils the Lipschitz condition
(3)  |F(22, wa, hy)—F (2, wy, hy)l < 1|z — 2, [* +|wy—wi] + |k — hy)),

where 4 is a given Holder exponent, 0 < 4 < 1. This condition ensures that
the superposition F(-, w, h) is Holder-continuous with exponent 4 in G if w
= w(z) and h = h(z) are Holder-continuous with the same exponent. Let w
= g(z) be a given solution of (2). If T; and I1; are the well-known double-
integral operators with the singularities 1/({ —z) and 1/{ —z)? respectively (cf.
Vekua [6]), then

(4) ¢ =w—-T;F(-, w, dw/0z)
is holomorphic and ¢w/dz satisfies the singular integro-differential equation
(5) owjoz =@+ F(-, w, 0w/0z).

The norm in the space of functions H6lder-continuous in G is denoted
by |I‘ll. The norms of operators T; and II; in the space of Holder-
continuous functions are denoted by ||T;|| and ||IT4||, respectively.

Suppose that the holomorphic function @ fulfils the condition

(6) igfI‘P’l > (L+|HTGIDIF (-, w, dw/éz)l|.

Taking into consideration relations (2) and (5) from the last inequality, one
easily gets

0) |éw/dz|% —|éw/é2)* > 0

such that the given solution w = g(z) defines a locally univalent orientable
mapping of G into the complex plane. Let ¢ be a uniformizer of the
Riemann surface defined by the given solution w = g(z) (concerning the
uniformization of Riemann surfaces see Nevanlinna [4]). Then the composite
function @og is globally univalent in G. Applying the lemma we prove the
following theorem:

THEOREM 1. Let w = g(z) be a given solution to the differential equation
(2). Suppose that the holomorphic function @ that corresponds to the given
solution w = ¢ (z) in the sense of (4) fulfils inequality (6). Then C [pog, @og] is
dense in €c(G).

ExampLE. In view of (4) in the case F =0 the solutions of (2) are
identical with holomorphic functions @. Conditions (6) is fulfilled iff @' # 0
everywhere in G.

2. Construction of solutions by which continuous functions can be
approximated. Let ¢ be a given function continuous in G and holomorphic
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in G. Regard the operator defined by
(8) W=&0+T;F(,w,h), H=®+I;F(,w,h).

If (w, h) is a fixed point of this operator, then w turns out to be a solution of
the differential equation (2). Thus operator (8) allows us to construct a
mapping between holomorphic functions and solutions of the differential
eqation (2). In the space of all Holder-continuous pairs (w, h) we define a
bicylinder D by

D={(w, h): [lw=9| <d,, |h—P < dy},
where d,, d, are certain positive constants. In order to construct fixed points
of the operator defined by (8) we will investigate its behaviour in the
bicylinder D. Accordingly, we suppose that the right-hand side F(z, w, h) of

(2) fulfils the Lipschitz condition (3) in the bicylinder . Further we assume
that the right-hand side F(z, w, h) fulfils the H&lder-Lipschitz condition

9) IE ¢y w, )= F (o, @, Bl < Ly llw =]l + Ly ||k — |
in . Denote ||F(:, @, ®)| by M. Then for (w, h)e D the estimate
NFCw, WII<IIFC, w, y=F (-, &, D) +[IF(-. &, 9|
<Lidy+L,dy+M
holds. Using this estimate, one easily gets the following results on the

operator defined by (8):

(a) It maps D into itself if

NP+ TGl (Ly dy + Lydy + M) < dy,

0 y<d
1911 +[1Tgll (Ly dy + Ly dy + M) < d.

(b) It is contractive if
(11) Tl (Ly+ Ly) <1, |IGII(Ly +Ly) < 1.

Provided that inequalities (10) and (11) are fulfilled the Banach fixed-point
theorem leads to the solution looked for. This solution w is uniquely
determined in D.

Additionally, assume that the given holomorphic function fulfils the
inequality

(12) inf|®'| > (1+|[Hg|)(L, d, +L,d,+ M).
G

This inequality implies that the constructed solution w =g(z) fulfils
inequality (7). Therefore the solution w defines a locally univalent mapping of
G into the complex plane. Once again using a uniformizer ¢ of the resulting
Riemann surface, we find that the.superposition ¢@og turns out to be
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univalent. Applying the lemma, one gets the following theorem for right-hand
sides F(z, w, h) fulfilling inequalities (3), (9), and (11):

THEOREM 2. Let @ be a given holomorphic function that fulfils inequalities
(10) and (12).

Then the ring C[¢@og, pog] is dense in C.(G), where w = g(2) is the
solution of (2) generated by .

Connections between L,, L,, M and d,, d, may be discussed in the
some way as in [5].
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