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Harmonic functions in four variables
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Abstract. Integral representations for harmonic functions in four
variables are investigated by means of an operator bearing close resem-
blence to the Whittaker-Bergman operator. The cases where the p,-asso-
ciate is algebraic is considered by means of the theory of double inte-
grals on algebraic three-folds. When the p,-associate is rational one
obtains particulary interesting representations by considering the con-
nections with Weierstrass integrals of the first, second, and third kinds.
defined over a Riemann surface. In addition, a residue theorem is given
for a class of harmonic vectors U = (u,, «,, %3, 4,) satisfying the relations
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which are analogous to the vanishing of the curl and divergence in three-
dimensions.

I. Introduction. The solutions of Laplace’s equation in four
variables,
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may be generated by means of an integral operator p,f], which bears.
a close resemblance to the Whittaker-Bergman operator pi[f] ([1], [2],
(31, (4], [7], [8], [10], [11], [12], [13], [17]). The operator p,f] transforms.
analytic functions of three complex variables into harmonic functions.
of four variables ([8], [12], [9]),
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D = C xI' is the product of a contour C in the £-plane, and a contour I
in the n-plane, and & > 0 is taken sufficiently small. We restrict D further
by insisting for each choice of f(z, 7, £) the integrand is absolutely inte-
grable ([3], [15]); here the double integral may be regarded as an iterated
integral, and the orders of integration may be interchanged.

In order to realize how the operator p, transforms analytic func-
tions in harmoniec functions we may introduce the homogeneous, har-
monic polynomials of degree n which are defined as follows ([6], [8],

(9], [12]):
1 . 1 1 1y, . /1 1\
@ =i in(i- g a0 i )
n
Yokl —k -1
= D EE@E
Jel=0
In view of (3), these polynomials have an integral representation

1 d
(4) HAYX) = — . ?5 @_rnnkgl

/=1 " |n[=1

’

where %k, are integers from 0 to n. Because of this representation, and
because the HX{(X) form a complete set of harmonic polynomials, we
may generate any harmonic function regular in the small of the origin,

(5) u(X) = S Eankzﬂf(x) ’

n=0 kl=0
from an analytic function,
00 n
<
(6) form &)= Y awar™¢,
n=0 k,\l=0

by means of the operator p,[f]. We shall (following Kreyszig [12] and
Bergman [4]) refer to (6) as the normalized associated function of u(X)
with respect to p,, or more concisely as the p,-associate of u(X).

II. Algebralc assoclates. In this section we consider the case,
where

—1p—1 (857, m, 6) _ Pu(X; 859, &)
) T ) = ST, m, B T Py(E; S, B

is a rational function of 8,7, %, & and where S, 7,7, & are connected
by an algebraic equation (!)

(8) Q(S; 7, n, &) = Az, 1, ‘E)Sn+A1(T’ Ny E)Sm—l'{‘-"‘l‘An(Ty n,£) =0,

(*) This case is an exteunsion to four variables of the case considered by Professor
Bergman in [5].
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where the A4,(r, %, &) are polynomials in 7, , £. If we multiply (8) by
a suitable power of # and & we obtain

(9) QUX;8;5m,8)=Ay(X;n, )8 +A44(X;9, 8" +... +4a(X;57,£) =0

where the A,(X; 5, &) are polynomials in %, & and =z, ,, @3, Z,.
The equation Q(X; S; n, &) = 0 defines for each fixed value of X

an algebraic surface in S, n, & The surface may also be represented
parametrically as

(10) S=yX;0a,8), n=¢X;a,8), §&=9$(X;a,lp),

where y, @,y are algebraic functions in a, f. Using this representation
we consider the sets of equations

x(X; a, ) = 2(X; 2, ),
(11) ¢(X; a, f) =9(X; a, '),

p(X; a, B) =v(X; d, B')
and

1(X; e, B) = x(X; o, f) = 2(X; ", B7),
(12) ¢(X; a, ) = ¢(X; o, f') = ¢(X; a”, B),
p(X; a, p) =v(X; o, B') = p(X; o7, B7).

There is an oo! of solutions to (11) and this will be in general a line
through which pass two nappes of the surface. This line is called a double
curve. There will be only a limited number of sclutions to (12); these
are the triple points of the surface, through which passes three double
lines and three nappes of the surface. The double curves, and triple
points are singularities of the surface. If by a birational transformation
the surface is mapped into another algebraic surface, whose only singu-
larities are a double curve and its triple points, the singularities are
called ordinary singularities ([16]).

We now suppose for X = X° (an initial point) the algebraic surface
QX% 8§; n, &) = 0 has just ordinary singularities. We consider integrals
on 3 =0 of the form,

(X5 S5 1, §)
(13) 4n2ffP2(X S; n,E)d ndé,

where X ¢ N(X°), and N(X°) is a sufficiently small neighborhood of X°

such that Q(8; X° %, £) = 0 has only ordinary singularities. It is con-
venient sometimes to write

(14) P\(X; 8; 7, E)E R(X; S; n, &)
Py(X; 8;n, &) oQ(X; 8; n, £)/e8’
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where R(X; S; n, &) is rational in §, %, §. In Picard and Simart ([16])
it is stated that the necessary and sufficient conditions for an inte-
grand (14) to always correspond to a finite valued integral (13) is that
R(X; 8; 5, &) =Q(X; 8; n, &) be a polynomial of degree n—4, and that
Q(X; S; n, &) pass through the double curve of Q = 0. In this case,
we call the integral (13) a double integral of the first kind ([16]).- There is
a number p,(X) associated with the surface Q = 0, called the geometric
genus or Flachengeschlecht, which plays a role similar to the Riemannian
genus of an algebraic curve. This number p,(X) is the number of linearly
independent double integrals of the first kind, that is the number of
linearly independent polynomials of degree n—4, Qu(X; 8; 7, &), which
pass through the double curve of Q = 0. It is understood that p; = py(X)
is essentially independent of X (2). If B is the set of points for which
the surface Q = 0 only has ordinary singularities, the geometric genus
is given by the simple formula ([16])

(15) Py = (”—1)(”';2)(%—3)_

This follows from the fact, that p, is invariant under a birational trans-
formation, and that p, is the number of arbitrary constants in the most
general surface of degree m—4 with no singular points. Consequently,
the most general integrals of the first kind representing %(X) may be
expressed as

— Q’C(X ‘8177’5)
(16) u(X) = 4-—22[[““& X; S,n,g)/asd nde .

We say that the integral (13) is a double integral of the second kind
over the algebraic surface ([5], [9]), if

P(X; 8,1, &) ff(aU )
dnd dnd
| f P(X; 8,7, 6 V1% :
remains finite for all ©. (U and V are rational functions.) Furthermore,
if Q =0 is an algebraic surface with just ordinary singularities it is

known that the integrals of the second kind representing u(X) have
the form

(17)  w(X)= 41:2[[3;? SS”W’Z’;}an A+ ff(w )dndé’

where P(X; 8, 7, £) is a polynomial which vanishes on the double curve
of 2 = 0. This result suggests the definition ([15]) that a set of integrals

(?) See footnote (), p. 335.



Harmonic functions in four variables with rational and algebraic p,-associates 277

of the second kind are distinet if any linear combination is not equal

to the form
oU ov
Qf(z +a_§)d’7d‘5’

From this definition follows the fundamental theorem on
double integrals of the second kind ([15]):

For an algebraic surface Q = 0 there are g, distinct double integrals
of the second kind, I,, I, ..., I, , such that any double integral of the second
kind may be written in the form

(6U oV

ol +ayl,+ ...+ q Ieo’Jf'ff 8£

)d dé

where the ax are constants and U,V are rational in 8, n, £&. Furthermore,
if Q =0 18 simply comnected the number g, is given by the formula

0= N—4p—(n—1)—(g—1),

where N is the class of the surface, p is the genus of an arbitrary plane
section, and n 18 the degree. (p—1) is the mumber of particular irreducible
algebraic curves {04}, which may be drawn on Q = 0, such that there
does not exist a total differential of the third kind, having for its ‘“‘logarithmic
curves’ one or more of the curves [{Ci)i=1 + the curve at oo), but if another
arbitrary curve C, ts added to the set there exists an integral having one
or more curves from this new set as ils ‘‘logarithmic curves’.

The class N of a surface defined by the equation Q(X; 8,7, &) =0
is the number of values of & = &;, 1 =1,2, ..., N, for which the genus
of the Riemann surface, E{Q = 0} ~ {& = &}, is less than p. It is clear,
that the genus will be diminished by one when the plane ¢ = &; becomes
tangent to the surface Q = 0 at a simple point; such a point constitutes
in general a double point of the surface. From the above discussion we
realize that if the integral representing u(X) is of the second kind omne
may write

Qo

(18) u(X)=2aka (X) + —ff(w (X; 8,9, 6) | VUL S n’f))dnd&

k=1

where the {Iy(X)} are a unique linearly independent set of integrals of
the second kind over Q = 0.

III. Rational assocliates. When f(z, 5, £) is a rational function
of 7,7, & it is possible to obtain representation formulae for #(X) in
terms of certain classical functions. In certain special cases we shall be
able to reproduce the representations obtained by Bergman ([1], [3], [17])
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and Mitchell ([13]) for harmonic functions of three variables with alge-
braic associates. For instance let us suppose

i, 7, §) QI(X7 7, &)
(19) fleym, €)= ¢(t, 7, & )17 QX 3 My &)

and let us consider

w(X) = — 47:2.”@2(1?’% dndé, D=T-C.

The singularity manifold of the integrand may be represented as

{Z"EE{Qa(X;??,E):O}, or as
ZA=E{t=A4,X;7n); v=1,2,..,m}.

In general for each fixed #7°eI’, there will be u roots, &, &k, ...y Eku,
inside C and m—pu roots, &k, ..., &,, outside C. As n varies over I"

the roots &,(n) move in the £-plane, and some may cross over C. If we
restrict X such that,

(20)

21)  Xear=B{X| [] [44X; ) —AuX;m)]=0; neT},
o<k<j<m

then there cannot be more than a first order pole of the integrand on

the domain of integration, and in this case the integrand is absolutely

integrable. One then has

(22) w(X) = wf S G dne = 2 f ST m e

where I', is that subset of the path I" for which 5,, = A, (X; ) lies inside
of C. Consequently, one may express each residue of the integrand (19)
as an Abelian integra,l

(X5 7, &)
(23) ~ 2mi fa ( X;n,¢ /6Ed

where I'* = }'I', is taken over the Riemann surface, R(X), defined by

ue=1
Q:(X; 7, £) = 0.

Before proceeding further, we should like to make some remarks
about the topology of R(X). In general, the genus o(X) of R(X) will
be constant, and R(X) will have m-sheets over the n-plane. However,
we note as Bergman has done in the case of three variables that
there will be certain exceptional points. To locate these exceptional
points we express

(24) QuX; m, &) = D ¢l X; ),
»=0
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where the ¢,(X; n) are polynomials in X,». We designate the follow-
ing sets:

St = B{X | gulX; ) = 0},
(25) GE=E{X|aX;n= [] [44X; 9 —AuX;7)] =0},

ogk<ism

63—[E'{X[A (X;7) = 0} A ElXI——_O}]

o [P 10z =0 - Bl | 2~ o],

and
S=Cueo&e.

As Mitchell has pointed out ([13]) when X e S;, R(X) has less than
n-sheets; when X e S;, Qu(X; %, &) has a repeated irreducible factor
involving &; if X € &3, 4(X; 5) or ¢u(X; ) has a multiple root and two
branch points coincide.

Now, as Bergman ([1], [3], [17]) has done in the case of algebraic
p,-associates, we make use of the Weierstrass decomposition formula
([18], p. 264) for algebraic functions defined over a Riemann surface

T

(26)  F(X;7,8) = D e(X)H(X; %, &5 1, 6)—

r=1

—ZEQu(X)H( ;15 &) G XV HIX; 7, )] + o [ZF X; 7, 8),

r

Dlax)=o,

y=1

where H.(X; n, §), Hi(X; 9, &), H(X; n,, &; n, &) are Weierstrass integ-
rands of the first, second, and third kind respectively. The F,(X; 5, &)
are rational functions of », &, p is the genus, r = r(X) is the number
of infinity points of F(X; n, &), and ¢,(X), ¢.(X), g2(X), are algebraic
functions of X. The number of infinity points of F = @,/Q, is the same
as the number of zeros of the coefficient ¢,(X; ).

In the situations discussed by Bergman ([1], [3], [17]) and Mitchell
([13]) for integrals of the type (23), I'* was always a closed curve over
R(X). With our case I'* is in general a sum of m disjoint segments on
R(X). The special case where I'* becomes a closed curve.corresponds
to when each of the roots & = A4,(X; %) (n=1,2,..,m), remains in-

(®) The superscripts on the sets 6: indicate that the sets are of real dimension two.
This convention for superscripts on sets will be used throughout this paper.
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side C for all nelI. In that case we obtain representations identical
to those of Bergman ([1], [3], [17]) and Mitchell ([13]).

In order to evaluate (23) we must introduce certain integrals on
M (X) associated with the integrands of the first, second, and third kind:

[H.X; 9, 8)dn, [HNX;7,86dn  (a=1,2,..,p),
C C

(27) }
JHX; 5, 650, 8dn (v=1,2,..,7),
C

and their pericds taken over the p cycles Ky(X), and p conjugate cycles
K3(X)
2w.s( X), 270p(X), Qp( X5 10y &) (e=1,2,..,p),

(28)
2w:ﬂ(X)7 2nas(X), Q;(Xy Ny &5) (B=1,2,..,p).

In addition we introduce integrals taken over open paths on R(X):

=,8)

JX; 1,86 = [ H(X; 9, &)y,
(@0,b0)
(29) (n,8) ’
INX;n, &= [ HNX; v, &)y (a=1,2,..,p)
(ao,b0)
and
(30)  J{(X; 7, & ny &5 Moy &)
n,8)
= [ (H(X;n, &; 0, &)—H(X; 00, &3 0y E)}y’ .
(@0,b0)

The integral (30) has the following primitive period system:

. E*(X Ny £,) E.B(X; Ny y &)
31 2 log =832y vy 5v) log =
(31) ™ B X e, ) S BNX; 70, &)

(ﬂ :1:2’---71’)’

where the functions E,, Ef are defined as

Ey(X; 5, &) = exp {Q(X; 7, £)},
E;(Xy 1, &) = exp{.Qg(X; 7, &)}

Lastly, we shall need the integrals of the third kind

(32)

(nys&y)

(33) QX5 1, &5 M0y &5 Moy &) = f H(X;n, &7 &)dy,
(n0.,%0)

and the functions

(34) E(X;n, &m0,y &5 10y &) = eXp{Q(X;5 9, &5 5y &05 N0y &)} -



Harmonic functions in four variables with rational and algebraic p,-associates 281
According to Weierstrass ([18], pp. 373, 374, 398) certain relations exist

between the integrands Hy(X; 7, &), H3(X; », §), H(X; n,, &; n, ) and
the F-functions,

d
Hy(X; 7, &) =%J9(X; 7,y &)

4
1 d « @
== D) fon po 3 VOB BH(X; m, &) — e 7 logE..(x,n,s)}
a==1
(35)
d
H;(X;n,£)=%-JE'(X;mE)
1 d d
== {npad—logE*( 0, 8)— kg log Bl X3 m, &)},
a=1
and

d
(36) H(X;n,,&;5m,8)—H(X; 19, &05m,8) = n log E(X; 1, & %y &5 Moy &) —

1 ,n., §) d
l E.(X;
g{ X; 70, &) @ og E,(X; 5, &) —

Eo(X; 15, &) @
—log 22t T o *(X; .
Og a(X, 1]0, 50) d’)]logE ( ’ ﬂ’ E)}

The function F(X;#n,£() may now be expressed in terms of
derivatives of the FE-functions by subtracting from it the sum

ZO,H(X; Moy &3 My &)y

ye=l

r

(BT F(Xin, 6= D) 6H(X; b1, 8)

y=1

_ Zc,d 108 E(X; 1, & 1y £3 70y &) +

r=1

+2{C* ilogE (X3 7, )—Ca(x)%logE;‘(X; 7, ,5)}+

a=1

+ 3 [ZF.(X, n,E)]

r=1

Annales Polonicei Mathematlei XV 20
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where

Ca(X)

= “2—1‘@(2 logg-ﬁ X §;)—2 2 [wﬂa(X)gﬁ(X)—npa(X)gﬂ(X)J)
(38) v=1

Ca(X)

r P
o( X5 1y & *
= 2%(2 elog g——afx; Z ii =2 ; [wpa(X)gﬁ(X)—nﬂa(Xmﬁ(Xn) .

We return to the evaluation of (23), and recall that I, is that subset
of I" for which the root £, = A4,(X; n) lies inside C. The root &, crosses C
a finite number of times, providing C is sufficiently smooth, since
f(r,n, &) is a rational function. Furthermore, we assume that &, lies
inside C for 7 contained in the union of intervals,

(39) I, = U ), m=mnUX)el.

Consequently, one has the result:

THEOREM 1. If the p,-associate of u(X) is a rational function of v, n, &
then whenever X ¢ &%, u(X) may be represented as

,E ’779’ 507 7707 50)
(40)  w(X)= { 6(X)log nfl 27T, +
22 2 E(X 52 5 My Eo 3 Moy So)

p=1 j= =1
P
Eq(X; 77 y ) Ei(X; 77,23,
+ [C:(X)].Og L '"' —CG(X)I ) ] 4
agl;‘ E.(X; ,2,’ Y 5,2,7 3 E"(X 27 -1 27 I

i Z (PAX; o, )~ Fo(X; 27, €57 ‘)1}

THEOREM 2. If in Theorem 1 the roots £,(X; n) all lie inside for all
n eI’y then the representation (40) reduces to the form

D r
(41)  w(X)= 2{ D T6UDQT; 1, &)+ 6D BT 7y £)]
) gl ) — 2" (X) s ) — ) gl ) — ga(X) (X0} +

a=]

+Res D F(X; 7, ).
r=1
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Theorem 2 is essentially Bergman’s result for three-dimensional
harmonic functions, and the reader is referred to his paper [5] on this
subject, and also to his book [4].

IV. A residue theorem for harmonic vectors. In this section
we introduce the harmonic vector U(X) = (u,, %,, Ug, %,), Dux = 0,
where the components are defined as follows:
1 d df
wX) == [ [1E 005,07
(42) [&1=1 [n]=1

N(y, &) =% (€ +1, i[gE—1], n—&, i[n+£)).

U(X) satisfies conditions similar to the vanishing of the divergence and
curl, namely

oUu, oUu,

(43) or _ 07 smnrsg_w;

=0,

where repeated indices indicate summation and epq.y 1S 2 permutation
symbol.
We are interested in integrals of the form

) e [U@ X = [aXe | [ 1, N n, &) 2L,

where 3’ is a smooth oriented curve, such that I3’ ~ &2 = 0, and f(z, 7, &)
1s a rational function of z, 5, £&. We shall assume that J’ intersects

, M =E{X|A(X;7)=0;nel}
and
N =E{X |gu(X;9) =0;nel'}

in a discrete set of points {X;}%-1, and that these points subdivide J
8

into open segments I = J(Xyz_y, Xi), ' = Ik If X°eJ), I does
k=1

not meet any of the branch points of R(X), because these points are
contained in the union of the sets,

E{n|A(X% n) =0} v E{n | ¢u(X% n) = 0} .

Furthermore, for X° e J), there are no poles of

1 XO; ’ E 0

since the discriminant 4(X° ) is computed by eliminating & between
Q. =0 and 9Q,/0f = 0.

20*
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Consequently we consider the integral

4::22 fUX) X = Zfdxofff —_ N(n,.s)d"dE

k=1 s k=1 Sk
Qlﬂxg W;E) ’
=1 3

- Z I, @5 = n6Qy, and N’ = ngN)

46
( ) m kX)) _ pX)

—-271:’?:2 fdx°{22 [ch )og B (X; 77.u 75277 Ny Ev3 Moy o) +

k=1 sk p=1 j= p=1

»X)

+ Z [F(X; iy &) —FuX; ol 7, & ‘)]]}

v=1

where ¢,(X), C,(X), C3(X), etc. are vector functions whose components
are terms similar to those of (38), arising from the Weierstrass decom-

Qi N,

position of the components 7, = TR on the Riemann surface defined
2

by @: =0.

Because the integrand in (45) is absolutely integrable we may inter-
change the X and (7, &) orders of integration. Then in order to facilitate
evaluation it is convenient to make the transformation from the X -gpace

to the r-plane by 7 = ©(X; 7, ), where 7, & are held fixed. We are led
to consider the integral

w0 1= [JH% [ e on- [[9F [Ho0 0

where J (7, £) is the image of 3’ under the mapping X — ¢ for fixed 7, &.
Since, g,(z, 7, £) is a polynomial, we may decompose it as

(48) &7, 1, &) =[r—nln, O [r—ln, O1...[t—uln, &)1*
for all (n,y &) ¢ E{(n, 5)[ ” [Tp(ny §)—1(n, £)] = 0}, that is gy(z, 1, &)

oSu<r<<

will have the factorization (48) with the exception of those (7, &) lying
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on a certain set of »(n+1)/2 analytic surfaces & = yi(n). Hence, we

obtain,
MM (1) y @, 1, &)
L= [ 0% D Gl o B

2(t, 1, &)

where 7(J; r,) is the winding number, or index, of J (7, £) with respect
to 7;. It is clear, that for certain subsets in (%, £) € D, »(J; 7;) will be zero,
and for other subsets of D it will take on positive integer values. In the
special case, where J’ is chosen such that J(», &) winds about 7; at most
once, and where I; =1, we may write

(49 I. = f f o dﬂ S T’)anZ'(rr,,nﬁ’;;ar}

where (7, §) is a root of g,(t, #, &) = 2 a(n, £)r* = 0. The index n(J; ;)
y=0

may be thought of here as a set function, since when (7, &) e DF C D,
n(J; 7;) = 1, whereas for (7,£)eD—-D}, »(J; 7)) = 0. Now, for each
fixed n = #° e I', there are certain values of & ¢ C for which 7; lies inside
3S(n, £). Let us suppose that the segments of C for which this occurs
may be expressed as

£3(n°) $;(n°)

(50) = U Culn®) = U C(&is[n®1, Eiln),

=1 i=1

where the E;}-l, £); are the end points of the segmentson C. As »° varies
along I" the intervals Cjy(%n) and their number vary. If for a particular
n = n’ there is no subset of C for which 7; lies inside J we shall set
C? = 0; consequently, we may write

k
51) I, — 07,71, &) dE dn 2 fdn &l m, §) 4E

— oqy(t5y my &)foTr & 7 aQ2/377 &

If ¢.(s,7n, &) is of degree m and ql(s, 7, E) is of degree m—4, the
integral I, may be represented as an integral of the first kind provided
0(s, n, &) = 0 passes through the double lines of ¢,(s,n, &) = 0. Here

. c m—1)\ .
we may represent ¢,(s, 7, £) as a linear combination of p, = 3 ) inde-
pendent polynomials Q,(s, n, &) (»=1,2,..., p,) and consequently ¢, / g

08
may be represented in terms of the integrands of the first kind H,(s, 7, &)

= Q. / nE . Consequently,

(52) Iz=__22f ffHﬂ(s,n, §)dgan,

1 u=1
and we have the result:
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THEOREM 3. Let U(X) = p,[fN] be a harmonic vector defined as above
with the rational associate f(tr,n, &) = q(z,n, &)/q(t, n, ). Furthermore,
let gs(t, n, &) be of degree m, q(s, n, &) be of degree m—4, and let ¢, = 0
pass through the double line of ¢, = 0. Then the integral of U(X)odX
taken about a smooth, oriented curve I’ may be represented as follows:

(53) .{U(X)odX

_.22 fdx°{2""(x)1°gEﬂ’ i’?.uafp,"?n‘fv; Moy £o)

;23 1, ‘51247 1, Moy Evs Moy &o)

r=1
il B )77#7 52) X; "7#!527
+.,Z=;[C log o ey o g
_Zza‘, f fH,,(s,n,fmsdn,
i=1 p=1

where 8 18 a root of qz(s, n, &) = 0. Furthermore, the integral has always
a finite value for each compact J'.
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