The f-sectional curvature of f-Kaehlerian manifolds

by Barbara Opozda (Kraków)

Abstract. Analogously to the Kaehlerian case, we introduce the notion of f-Kaehlerian manifold, where f is a metric polynomial structure, and consider the sectional curvature by planes invariant by f.

0. Let (M, g) be a connected Riemannian manifold and let f be a (1, 1)-tensor field on M satisfying the condition g(fX, fY) = g(X, Y) for any tangent vectors X and Y. The Riemannian connection defined by the metric tensor g will be denoted by V. If $\nabla f = 0$ then (M, g, f) will be called an f-Kaehlerian manifold. Of course, if (M, g, f) is an f-Kaehlerian manifold, then f is a metric polynomial structure in the sense of [3]. An f-Kaehlerian manifold will be called of type I, II, III or IV if the metric polynomial structure f is of type I, II, III or IV, respectively, i.e., the minimal polynomial $P(\xi)$ of f is

(I)
$$P(\xi) = (\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_s \xi + 1),$$

(II)
$$P(\xi) = (\xi - 1)(\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-1} \xi + 1),$$

(III)
$$P(\xi) = (\xi + 1) (\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-1} \xi + 1),$$

(IV)
$$P(\xi) = (\xi - 1)(\xi + 1)(\xi^2 + 2a_1 \xi + 1) \dots (\xi^2 + 2a_{s-2} \xi + 1),$$

where $a_i^2 < 1$ and $a_i \neq a_j$ for $i \neq j$.

Recall that the almost product structure $D = (D_1, ..., D_s)$ associated with f has projectors $P_1, ..., P_s$ which are polynomials in f, [3]. It follows that D is f-invariant and parallel with respect to V.

Since the connection ∇ is without torsion, f and D are integrable.

The almost product structure D is orthogonal, i.e., distributions D_1, \ldots, D_s are mutually orthogonal, [5].

For the tensor field f we associate the (1, 1)-tensor field defined by

$$J = \sum_{i=1}^{s} \frac{f + a_{i} I}{\sqrt{1 - a_{i}^{2}}} P_{i},$$

where I is the identity tensor field on M. It is easy to check that J satisfies the equation $J^3 - J = 0$ and J is an almost complex structure if only f is of

type I. For an f-Kaehlerian manifold of type I its metric is Hermitian with respect to J, [5], and consequently, (M, g, J) is Kaehlerian.

It would be of some interest to note that what is called an f-structure, i.e. a (1, 1)-tensor field satisfying the equation $f^3 - f = 0$, may be considered as a metric polynomial structure. Namely, defining \tilde{f} by $\tilde{f} = P + f$, where P denotes the projector on the distribution on which f vanishes, \tilde{f} is a metric polynomial structure and $\nabla f = 0$ if and only if $\nabla \tilde{f} = 0$. For instance, if f is a \mathscr{C} -structure (see [2]), M is \tilde{f} -Kaehlerian.

As usual, R will denote the curvature tensor of V, i.e. the tensor field of type (1, 3) defined by $R(X, Y)Z = [V_X V_Y]Z - V_{[X,Y]}Z$ for any vector fields X, Y, Z.

R will also denote the Riemannian curvature tensor field, i.e. the tensor field of type (0, 4) defined as R(X, Y, Z, W) = g(R(Z, W) Y, X) for vectors X, Y, Z, W.

If X and Y form an orthonormal basis of a plane p in the tangent space $T_x M$, then the sectional curvature K(p) of p is given by g(R(X, Y), Y, X). If (M, g, f) is an f-Kaehlerian manifold and p is an f-invariant plane in $T_x M$, then the curvature K(p) will be called the f-sectional curvature by p. If f is an almost complex structure, then the f-sectional curvature is the holomorphic sectional curvature.

By an integral manifold of a distribution we shall always mean a connected integral manifold.

If X is a vector field and T is a distribution, then the notation $X \in T$ means that $X_x \in T_x$ for every point x belonging to the domain of X.

1. PROPOSITION 1. Let $T = (T_1, ..., T_m)$ be an orthogonal almost product structure parallel with respect to V. Then R(X, Y, Z, W) = 0 provided that two of the tangent vectors X, Y, Z, W belong to different distributions of T.

Proof. Since the almost product structure T is parallel with respect to V, $V_X Y \in T_i$, $1 \le i \le m$, provided $Y \in T_i$. Hence if $Y \in T_i$ then $R(Z, W) Y \in T_i$ for any tangent vectors Z, W. Let $X \in T_i$, $Y \in T_j$ and $i \ne j$. Since R(X, Y, Z, W) = g(R(Z, W) Y, X) and T_i is orthogonal to T_j , we have R(X, Y, Z, W) = 0. But R(X, Y, Z, W) = R(Z, W, X, Y), and so if $Z \in T_i$ and $W \in T_j$, where $i \ne j$, then R(X, Y, Z, W) = 0. Now, it is sufficient to consider the case where $X, Y \in T_i$, $Z, W \in T_j$ and $i \ne j$. It is known that R satisfies the identity

$$R(X, Y, Z, W) = -R(X, Z, W, Y) - R(X, W, Y, Z).$$

But R(X, Z, W, Y) = 0 and R(X, W, Y, Z) = 0 by the first part of the proof. Hence R(X, Y, Z, W) = 0.

PROPOSITION 2. Let f be a metric polynomial structure on M. If f is of type I, II, or III, then for every f-invariant plane $p \subset T_x M$, there exists an $1 \le i \le s$ such that $p \subset D_{ix}$.

If f is of type IV and p is an f-invariant plane in $T_x M$, then $p \subset D_{1x} \oplus D_{2x}$ or there exists an $3 \le i \le s$ such that $p \subset D_{ix}$.

Proof. It is sufficient to consider a metric polynomial structure of type IV.

We set $T_1 = D_1 \oplus D_2$, $T_2 = D_3 \oplus \ldots \oplus D_s$. Let $p \subset T_x M$ be an f-invariant plane. If there is a vector $Y \in p$, $Y \neq 0$ and $Y \in T_{2x}$, then Y and fY belong to $p \cap T_{2x}$. Vectors Y and fY are linearly independent and p is a 2-dimensional vector space; hence $p \subset T_{2x}$.

Suppose now that there is a vector $X \in p$ such that

(1)
$$X = X_1 + X_2 + X_3$$
, where $X_1 \in D_{1x}$, $X_2 \in D_{2x}$, $X_3 \in T_{2x}$ and $X_1 + X_2 \neq 0$.

Then we have

(2)
$$f(X) = X_1 - X_2 + f(X_3).$$

By equalities (1) and (2) and by the obvious fact that $X + f(X) \in p$, we have

(3)
$$2X_1 + X_3 + f(X_3) \in p.$$

Since $f(2X_1 + X_3 + f(X_3)) \in p$, we obtain

(4)
$$2X_1 + f(X_3) + f^2(X_3) \in p.$$

By equalities (3) and (4), we have $X_3 - f^2(X_3) \in p$. But $X_1 + X_2 \neq 0$, and thus $X_1 + X_2 + X_3 \notin T_{2x}$. This means that $p \notin T_{2x}$ and by the first part of the proof $X_3 - f^2(X_3) = 0$. Therefore, by the definition of T_2 , we see that $T_3 = 0$. Consequently $T_2 = T_1$.

Suppose now that $p \subset T_{2x}$. Notice first that if $p \cap D_{ix} \neq \{0\}$, then $p \subset D_{ix}$. In fact, let $X \neq 0$ and $X \in p \cap D_{ix}$. The vectors X and f(X) are linearly independent, and hence X, f(X) is a basis in p. Therefore $p \subset D_{ix}$. Let X be a vector such that $X \in p$, $X = X_3 + \ldots + X_s$, $X_3 \in D_{3x}$, ..., $X_s \in D_{sx}$, and there exist $i \neq j$, $3 \leq i, j \leq s$ such that $X_i \neq 0$, $X_j \neq 0$. It is obvious that if a plane is f-invariant then it is also f^{-1} -invariant. Hence $f^{-1}(X_3) + \ldots + f^{-1}(X_s) \in p$. Since

$$f^{-1}(X_k) = -f(X_k) - 2a_{k-2} X_k, \quad 3 \le k \le s,$$

we obtain

$$-f(X_3)-2a_1 X_3-\ldots-f(X_s)-2a_{s-2} X_s \in p.$$

But $f(X_3) + \ldots + f(X_s) \in p$ and thus $a_1 X_3 + \ldots + a_{s-2} X_s \in p$. Since $X_i \neq 0$, $X_j \neq 0$ and $a_{i-2} \neq a_{j-2}$, vectors $X_3 + \ldots + X_s$ and $a_1 X_3 + \ldots + a_{s-2} X_s$ are linearly independent. Consequently, there are numbers β and γ such that

$$f(X_3) + \dots + f(X_s) = \beta(X_3 + \dots + X_s) + \gamma(a_1 X_3 + \dots + a_{s-2} X_s)$$

= $(\beta + \gamma a_1) X_3 + \dots + (\beta + \gamma a_{s-2}) X_s$.

Since $X_k \in D_{kx}$ and $f(X_k) \in D_{kx}$, $f(X_k) = (\beta + \gamma a_{k-2}) X_k$ for every k = 3, ..., s. On the other hand, vectors X_i and $f(X_i)$ are linearly independent. Hence the contradiction and this completes the proof.

It is trivial that if a plane p is included in D_{ix} and f is not a multiple of indentity on D_i then p is f-invariant if and only if p is J-invariant.

Observe also that if a plane p is f-invariant and $p \subset D_{1x} \oplus D_{2x}$, then $p \subset D_{1x}$ or $p \subset D_{2x}$, or p is spanned by vectors $X_1 \in D_{1x}$ and $X_2 \in D_{2x}$. In fact, if, $p \notin D_{1x}$, and $p \notin D_{2x}$, then there is a vector $X \in p$, $X = X_1 + X_2$, where $0 \neq X_1 \in D_{1x}$, $0 \neq X_2 \in D_{2x}$. Since p is f-invariant, $X_1 - X_2 \in p$. Therefore, $X_1 \in p$ and $X_2 \in p$. This means that X_1, X_2 is a basis in p. Conversely, if $0 \neq X_1 \in D_{1x}$, $0 \neq X_2 \in D_{2x}$, then a plane spanned by vectors X_1, X_2 is f-invariant. Notice also that if dim $D_i \geqslant 2$, $i = 1, \ldots, s$, then there exists an f-invariant plane in $D_{ix}, x \in M$.

The following versions of Schur's theorems are known:

THEOREM 3. Let (M, g) be a connected Riemannian manifold of dimension $n \ge 3$. If the sectional curvature K(p), where p is a plane in $T_x M$ depends only on x, then M is a space of constant curvature.

THEOREM 4. Let (M, g, J) be a connected Kaehlerian manifold of complex dimension $n \ge 2$. If the holomorphic sectional curvature K(p), where p is a plane in $T_x M$, depends only on x, then M is a space of constant holomorphic sectional curvature.

We now prove an f-Kaehlerian analogue of Schur's theorem. We shall first prove the following

THEOREM 5. Let (M, g, f) be a connected f-Kaehlerian manifold. If for some $1 \le i \le s$ dim $D_i \ge 3$ and if the f-sectional curvature K(p), where p is an f-invariant plane in D_{ix} , depends only on x, then there exists a number c such that K(p) = c for every f-invariant plane $p \subset D_x$ and $x \in M$.

Proof. Since M is connected, it suffices to show that for every $x \in M$ there is a neighbourhood U and a number c such that K(p) = c for every f-invariant plane $p \subset D_{iy}$ and $y \in U$. In the proof of this statement we shall use the following

LEMMA. Let (M, g, f) be an f-Kaehlerian manifold. Let $T = (T_1, ..., T_m)$ be an almost product structure on M the projectors of which are polynomials in f. Then every integral manifold N_i of distribution T_i , i = 1, ..., m, with the metric tensor g_i which is the restriction of g to N_i and with the tensor field f_i which is the restriction of f to N_i is an f_i -Kaehlerian manifold. Moreover, for any plane $p \subset T_x N_i$, $x \in N_i$, $K_i(p) = K(p)$, where $K_i(p)$ is the sectional curvature by p on N_i .

Proof of Lemma. Since the almost product structure is f-invariant, the restriction f_i of f to an integral manifold N_i is well defined. Let Q_1, \ldots, Q_m be projectors of T. As polynomials in f, Q_i , $i = 1, \ldots, m$, are parallel with respect to V. Therefore, if V^i denotes the Riemannian connection defined by g_i , V_X^i Y

 $= V_X Y$ for any vector fields X, Y on N_i . Using this fact, we infer that for any vector fields X, Y on N_i

$$(\nabla_{\mathbf{x}}^{i}f_{i})Y = \nabla_{\mathbf{x}}^{i}(f_{i}Y) - f_{i}(\nabla_{\mathbf{x}}^{i}Y) = \nabla_{\mathbf{x}}(fY) - f(\nabla_{\mathbf{x}}Y) = (\nabla_{\mathbf{x}}f)Y = 0.$$

Hence (N_i, g_i, f_i) is an f_i -Kaehlerian manifold.

If R_i denotes the curvature tensor of V^i , then $R_i(X, Y)Z = R(X, Y)Z$ for all vector fields X, Y, Z on N_i , because

$$R_i(X, Y)Z = [\mathcal{V}_X^i \mathcal{V}_Y^i]Z - \mathcal{V}_{[X,Y]}^i Z = [\mathcal{V}_X \mathcal{V}_Y]Z - \mathcal{V}_{[X,Y]}Z.$$

Consequently, if p is a plane in $T_x N_i$, then $K_i(p) = g_i(R_i(X, Y), X) = g(R(X, Y), X) = K(p)$, where X, Y is an orthonormal basis in p. This finishes the proof of the lemma.

Now we go back to the proof of our theorem.

The tensor field f is 0-deformable, and so there is a matrix $F \in GL(n, \mathbb{R})$ such that the Jordan canonical form of f_x is equal to F for all $x \in M$. Since f is integrable, for every x of M there exists a chart $(U, \varphi = (x^1, ..., x^n))$ such that $d_y \varphi \circ f_y \circ d_{\varphi(y)} \varphi^{-1} = F$ for every $y \in U$. A chart chosen in this way is called a chart associated with the integrable tensor field f. The same chart is also associated with the integrable almost product structure D, because its projectors are polynomials in f.

Let $x \in M$ and let $(U, \varphi = (x^1, ..., x^n))$ be a chart associated with the integrable tensor field f and, moreover, let $\varphi(x) = 0 \in \mathbb{R}^n$. Then there are vector subspaces $\mathbb{R}^{(i)}$, i = 1, ..., s, in \mathbb{R}^n satisfying the equality $\mathbb{R}^{(i)} = d_y \varphi(D_{iy})$ for $y \in U$. The projection in \mathbb{R}^n onto $\mathbb{R}^{(i)}$ will be denoted by $P^{(i)}$. Of course, U can be chosen so that $\varphi(U) = V_1 \times ... \times V_s$, where V_i , i = 1, ..., s, are neighbourhoods of 0 in $\mathbb{R}^{(i)}$. Then $M_{iy} = \varphi^{-1} \left(\sum_{j \neq i} P^{(i)}(\varphi(y)) + V_i \right)$ is an integrable manifold of D_i through $y \in U$. In particular, $M_{ix} = \varphi^{-1}(V_i)$ and we shall

denote $U_i = M_{ix}$.

If f is a multiple of identity on D_i then (U_i, g_i) has a constant sectional curvature by Theorem 3. By Theorem 4, if f is not a multiple of identity on D_i , then $\left(U_i, g_i, J_i = \frac{f_i + a_i I}{\sqrt{1 - a_i^2}}\right)$ is a Kaehlerian manifold with a constant

holomorphic sectional curvature. Hence, by the remarks made after Proposition 2, it is seen that (U_i, g_i, f_i) is an f_i -Kaehlerian manifold of constant sectional curvature, say c.

Consider mappings

$$\widetilde{\varphi}^r = \varphi^{-1} \circ P^{(r)} \circ \varphi : U \to U_r, \quad r = 1, ..., s.$$

The restriction $\widetilde{\varphi}^r|_{M_r}: M_{r_y} \to U_r$ is a diffeomorphism. It is also an isometry (with respect to the restrictions of g to M_{r_y} and U_r). In fact, taking $X_i = \partial/\partial x^i$, $X_j = \partial/\partial x^j \in D_r$, we have $d_z \widetilde{\varphi}^r(X_i) = X_{i(\widetilde{\varphi}^r(z))}$, $d_z \widetilde{\varphi}^r(X_i) = X_{j(\widetilde{\varphi}^r(z))}$ and $(P^{(r)} \circ \varphi) (\widetilde{\varphi}^r(z)) = (P^{(r)} \circ \varphi) (z)$. Therefore, it suffices to show that if X_k

 $=\hat{c}/\hat{c}x^k \in D_m$, where $m \neq r$, then $X_k(g(X_i, X_j)) = 0$. Since $V_{X_k}X_j = V_{X_k}X_i = 0$, [5], and g is parallel with respect to V, we have

$$X_{k}(g(X_{i}, X_{j})) = V_{X_{k}}(g(X_{i}, X_{j})) = g(V_{X_{k}}X_{i}, X_{j}) + g(X_{i}, V_{X_{k}}X_{j}) = 0.$$

The map $\tilde{\varphi}^r$ has the following property: $d_y \tilde{\varphi}^r \circ f_y = f_{\tilde{\varphi}^r(y)} \circ d_y \tilde{\varphi}^r$ for $y \in U$. We have

$$\begin{split} d_{y}\,\widetilde{\varphi}^{r} \circ f_{y} &= d_{p^{(r)}(\varphi(y))}\,\varphi^{-1} \circ P^{(r)} \circ d_{y}\,\varphi \circ f_{y} \\ &= d_{p^{(r)}(\varphi(y))}\,\varphi^{-1} \circ F \circ P^{(r)} \circ d_{y}\,\varphi \\ &= (d_{p^{(r)}(\varphi(y))}\,\varphi^{-1} \circ F \circ d_{\widetilde{\varphi}^{r}(y)}\,\varphi) \circ (d_{p^{(r)}(\varphi(y))}\,\varphi^{-1} \circ P^{(r)} \circ d_{y}\,\varphi) \\ &= f_{\widetilde{\varphi}^{r}(y)} \circ d_{y}\,\widetilde{\varphi}^{r}. \end{split}$$

This means that if $p \subset D_{r_y}$ is an f-invariant plane in D_{r_y} then $d_y \tilde{\varphi}^r(p)$ is also f-invariant. By virtue of Lemma, and by the fact that $\tilde{\varphi}^r|_{M_{r_y}}$ is an isometry, it follows that $K(p) = K(d_y \tilde{\varphi}(p)) = c$. Hence the proof is completed.

COROLLARY 6. Let (M, g, f) be an f-Kaehlerian manifold. Assume that there is an $1 \le i \le s$ such that dim $D_i \ge 3$, where $D = (D_1, ..., D_s)$ is the almost product structure associated with f. If the f-sectional curvature K(p), where p is an f-invariant plane in $T_x M$, depends only on x, then the f-sectional curvature is constant on M. Moreover, if f is of type IV, the f-sectional curvature vanishes on M.

Proof. The first part of the assertion immediately follows from Theorem 5. Now let f be of type IV and let $X_1 \in D_{1x}$, $X_2 \in D_{2x}$ be unit vectors. As we have already remarked, X_1 , X_2 span an f-invariant plane p in $T_x M$. Since D_1 and D_2 are orthogonal, $K(p) = R(X_1, X_2, X_1, X_2)$. By Proposition 1, K(p) = 0, and this completes the proof.

2. An f-Kaehlerian manifold (M, g, f) will be called δ -f-pinched if there is a positive number A such that $\delta A \leq K(p) \leq A$, for all planes p invariant by f. If f is an almost complex structure then a δ -f-pinched manifold is said to be δ -holomorphically pinched. Notice also that a δ -f-pinched f-Kaehlerian manifold with $\delta > 0$ is not of type IV.

We now give a number of implications of the pinching assumptions.

THEOREM 7. For a δ -f-pinched f-Kaehlerian manifold (M, g, f), with $\delta > 1/2$, the decomposition of the tangent space $T_x M = \bigoplus_{i=1}^s D_{ix}$ associated with f is the de Rham decomposition of $T_x M$ with respect to g.

Moreover, if there are vectors in $T_x M$ which are fixed by the restricted linear holonomy group $\psi(x)$, then f is of type II or III, D_{1x} is a set of all such vectors and dim $D_1 = 1$.

Proof. We shall first show that if f is not a multiple of identity on D_i and, for every $h \in \psi(x)$, h(X) = X, then X = 0. As usual, let M_{ix} denote the

integral manifold of D_i through x and g_i the restriction of the metric tensor g to M_{ix} . Then (M_{ix}, g_i, J_i) is Kaehlerian, where

$$J_{i_y} = \frac{f|_{\boldsymbol{D}_{i_y}} + a_i I|_{\boldsymbol{D}_{i_y}}}{\sqrt{1 - a_i^2}} \quad \text{for} \quad y \in M_{i_x}.$$

Furthermore, M_{ix} is δ -holomorphically pinched. It is known, see [1], that a $\frac{1}{2}$ -holomorphically pinched Kaehlerian manifold has positive definite Ricci tensor. On the other hand, we have the following

THEOREM ([4], vol. II, p. 173). Let (M, g, J) be a Kaehlerian manifold. If the Ricci tensor is non-degenerate at some point of M, then the restricted linear holonomy group $\psi(x)$ at x contains J_x .

Hence $J_{ix} \in \psi^i(x)$, where $\psi^i(x)$ is the restricted linear holonomy group at x of the Riemannian connection V^i . Therefore, the tensor field \bar{J}_i defined as $JP_i + \sum_{i \neq j} P_j$ belongs to $\psi(x)$. But \bar{J}_i does not fix any non-zero vector of D_{ix} , and hence X = 0.

Considering again D_i on which f is not a multiple of identity, suppose that there is a non-trivial subspace S_x in D_{ix} invariant by $\psi(x)$. Let S_x' be the orthogonal complement of S_x in $T_x M$. S_x' is also invariant by $\psi(x)$. Let S and S' denote distributions on M obtained from S_x and S_x' by parallel displacement to each point of M. Choose vectors $X_1 \in S_x$, $X_2 \in S_x'$ such that $g(X_1, X_1) = g(X_2, X_2) = \frac{1}{2}$. Let p be the plane spanned by vectors $X_1 + X_2$, $JX_1 + JX_2$. We have $J(X_1 + X_2) = \overline{J_i}(X_1 + X_2) = \overline{J_i}(X_1) + \overline{J_i}(X_2)$. Since $\overline{J_{ix}} \in \psi(x)$, $\overline{J_i}(X_1) \in S_x$ and $\overline{J_{ix}}(X_2) \in S_x'$. It is clear that $\overline{J_i}(X_1) = J(X_1)$ and $\overline{J_i}(X_2) = J(X_2)$. Therefore, $\sqrt{2}X_1$, $\sqrt{2}J(X_1)$ is an orthonormal basis for an f-invariant plane $p_1 \subset S_x$ and $\sqrt{2}X_2$, $\sqrt{2}J(X_2)$ is an orthonormal basis for an f-invariant plane $p_2 \subset S_x'$. By virtue of Proposition 1, we obtain

$$K(p) = R(X_1 + X_2, JX_1 + JX_2, X_1 + X_2, JX_1 + JX_2)$$

$$= R\left(\frac{1}{\sqrt{2}}(\sqrt{2}X_1), \frac{1}{\sqrt{2}}(\sqrt{2}JX_1), \frac{1}{\sqrt{2}}(\sqrt{2}X_1), \frac{1}{\sqrt{2}}(\sqrt{2}JX_1)\right) +$$

$$+ R\left(\frac{1}{\sqrt{2}}(\sqrt{2}X_2), \frac{1}{\sqrt{2}}(\sqrt{2}JX_2), \frac{1}{\sqrt{2}}(\sqrt{2}X_2), \frac{1}{\sqrt{2}}(\sqrt{2}JX_2)\right)$$

$$= \frac{1}{4}K(p_1) + \frac{1}{4}K(p_2).$$

On the other hand, $K(p) \ge \delta A > \frac{1}{2}A$ for some constant A and $K(p_1) \le A$, $K(p_2) \le A$. Hence $\frac{1}{2}A < K(p) \le \frac{1}{2}A$, which is a contradiction. This means that $\psi(x)$ is irreducible on D_{ix} .

Now suppose that $\psi(x)$ is reducible on D_{1x} and f is a multiple of identity on D_1 . As in the previous case, there is an almost product structure $(S, S', D_2, ..., D_s)$ satisfying the assumptions of Proposition 1. Therefore, for

any vectors $X_1 \in S_x$, $X_2 \in S_x'$, $R(X_1, X_2, X_1, X_2) = 0$. So K(p) = 0 for the f-invariant plane spanned by X_1 and X_2 . Hence a contradiction.

The second part of the assertion follows immediately from the above proof.

Remark. If an f-Kaehlerian manifold is of type I and is δ -f-pinched, with $\delta > 0$, then the associated Kaehlerian manifold is $\frac{1}{s^2} \delta$ -holomorphically pinched. In fact, let $X \in T_x M$ and g(X, X) = 1. Then $X = \sum_{i=1}^s X_i$, where $X_i \in D_{ix}$. Assume that $g(X_i, X_i) = B_i > 0$, $i = 1, ..., k \leq s$ and $\sum_{i=1}^s B_i = 1$. We

$$R(X, JX, X, JX) = \sum_{i=1}^{s} R(X_i, JX_i, X_i, JX_i)$$

$$= \sum_{i=1}^{k} B_i^2 R\left(\frac{1}{\sqrt{B_i}} X_i, J\left(\frac{1}{\sqrt{B_i}} X_i\right), \frac{1}{\sqrt{B_i}} X_i, J\left(\frac{1}{\sqrt{B_i}} X_i\right)\right).$$

It is clear that $\sum_{i=1}^k B_i^2 \le 1$ and there is $1 \le i_0 \le k$ such that $B_{i_0} \ge \frac{1}{s}$. Hence $\frac{1}{s^2} \delta A \le R(X, JX, X, JX) \le A$ for some constant A and every vector $X \in T_x M$.

The following Kaehlerian version of Myers theorem is known

THEOREM 8. A complete δ -holomorphically pinched Kaehlerian manifold, with $\delta > 0$, is compact and simply connected.

By this theorem and by the last Remark it can be seen that a complete δ -f-pinched f-Kaehlerian of type I with $\delta > 0$ is compact and simply connected. As for the general case, this assertion is not true. For instance, let M be a $0 < \delta$ -holomorphically pinched Kaehlerian manifold. Then $R \times M$, with the product metric and with the metric polynomial structure M which is a direct product of the identity (1, 1)-tensor field on R and the almost complex structure on M, is a $0 < \delta$ -f-pinched f-Kaehlerian manifold and it is not compact.

However, using the same idea as in the proof of the theorem of Myers, we obtain

THEOREM 9. A complete f-Kaehlerian manifold whose f-sectional curvature is bounded away from zero and for which dim $D_1 \ge 2$ is compact.

Proof. We outline the proof given in [4], vol. I, p. 88, making the necessary changes.

The theorem is to be proved for f-Kaehlerian manifolds of type II or III.

Recall that if τ is a geodesic in M, then two points x and y on τ are said to be *conjugate to each other along* τ if there exists a non-zero Jacobi field X along τ which vanishes both at x and at y.

Next we shall use the following theorems:

THEOREM 10. Let $\tau = x_t$, $a \le t \le b$, be a geodesic in M such that x_a has no conjugate point along $\tau = x_t$ for $a \le t \le b$. If X is a piecewise differentiable vector field along τ vanishing at x_a and x_b and perpendicular to τ , then

$$\int_{a}^{b} (g(VX, VX) - g(R(X, \dot{\tau})\dot{\tau}, X)) dt \ge 0.$$

THEOREM 11. Let $\tau = x_t$, $a \le t \le b$, be a geodesic. If there is a conjugate point x_c , where a < c < b, of x_a , then τ is not a minimizing geodesic joining x_a to x_b .

Let x and y be arbitrary points of M and let $\tau = x_t$, $a \le t \le b$, be a minimizing geodesic joining x to y. Such a geodesic exists because (M, g) is complete. By Theorem 11, x_a has no conjugate point along τ for a < t < b. Let a < c < b. The vector field $\dot{\tau}$ can be decomposed into the sum $\dot{\tau} = X_1 + \ldots + X_s$, where $X_i \in D_i$. Of course, vector fields X_1, \ldots, X_s are parallel along τ . Let Y_1 be a vector field belonging to D_1 parallel along τ , perpendicular to $\dot{\tau}$ and such that $g(Y_1, Y_1) = g(X_1, X_1)$. Now define $Y = Y_1 + JX_2 + \ldots + JX_s$. Then Y is parallel along τ and g(Y, Y) = 1. If $K(p) \ge \delta > 0$ for some number δ and for any f-invariant plane p, then $R(Y, \dot{\tau}, Y, \dot{\tau}) \ge \frac{1}{s^2} \delta$. Now let $\alpha(t)$ be a non-zero function such that $\alpha(a) = \alpha(c) = 0$. By virtue of Theorem 10, we have

$$0 \leq \int_{a}^{c} (g(\nabla \alpha Y, \nabla \alpha Y) - R(\alpha Y, \dot{\tau}, \alpha Y, \dot{\tau})) dt$$

$$= \int_{a}^{c} (g(\alpha' Y, \alpha' Y) - \alpha^{2} R(Y, \dot{\tau}, Y, \dot{\tau})) dt$$

$$= \int_{a}^{c} (\alpha'^{2} - \frac{1}{s^{2}} \delta \alpha^{2}) dt.$$

Taking $\alpha(t) = \sin \pi \left(\frac{t-a}{c-a}\right)$, we obtain $c-a \le \pi/\sqrt{(1/s^2)}\,\delta$ for every a < c < b. Consequently, $b-a \le \pi/\sqrt{(1/s^2)}\,\delta$. This means that M is bounded. On the other hand, M is complete. Hence it is compact.

Remark. Theorem 7 holds under weaker assumptions than those given above. Namely, we may assume that there are positive numbers A_1, \ldots, A_s and numbers $\delta_1, \ldots, \delta_s$ such that if an f-invariant plane p is contained in D_i , then $\delta_i A_i \leq K(p) \leq A_i$ and we shall say that (M, g, f) is $(\delta_1, \ldots, \delta_s)$ -f-

pinched. If $\delta_i > 1/2$, i = 1, ..., s, in the case where f is of type I or $\delta_1 > 0$ and $\delta_i > 1/2$, i = 2, ..., s, in the case where f is of type II or III, then we obtain the assertion of Theorem 7 without changing the proof.

Note that, since $A_1, \ldots, A_s > 0$, by replacing the metric tensor g by \bar{g} defined as

$$\bar{g}(X_1 + \dots + X_s, Y_1 + \dots + Y_s) = \frac{1}{A_1} g(X_1, Y_1) + \dots + \frac{1}{A_s} g(X_s, Y_s),$$
where $X_i, Y_i \in D_i$,

we obtain an f-Kaehlerian manifold (M, \bar{g}, f) . Moreover, if (M, g, f) is $(\delta_1, \ldots, \delta_s)$ -f-pinched and f is not of type IV, then (M, \bar{g}, f) is δ -f-pinched, where $\delta = \min(\delta_1, \ldots, \delta_s)$. Hence, if $\delta_1, \ldots, \delta_s > 0$ and f is of type I, then (M, \bar{g}, f) is $0 < \delta$ -f-pinched and consequently M is simply connected and compact providing (M, g) is complete.

Assume now that (M, g, f) is a complete, simply connected f-Kaehlerian manifold. Let M_i , i = 1, ..., s, denote the maximal integral manifold of D_i through a fixed point of M. It is known (as in the case of the de Rham decomposition, [4], vol. I, Chapter IV, § 6) that there is an isometry $F = (p_1, ..., p_s)$: $M \to M_1 \times ... \times M_s$ having the following property: if a vector field X equals $X_1 + ... + X_s$, where $X_i \in D_{ix}$, then $d_x p_i(X)$ is obtained by the composition of parallel displacements of X_i , first along a curve in M with respect to V, and then along a curve in M_i with respect to V^i . Since Vf = 0 and, by virtue of Lemma in the proof of Theorem 5, $V^i f_i = 0$, we have $dF \circ f|_{D_i} = f_i \circ dF$ and consequently $dF \circ f = (f_1 \times ... \times f_s) \circ dF$. Therefore, a complete, simple connected f-Kaehlerian manifold is a "product" of integral manifolds of the almost product structure associated with f.

References

- [1] M. Berger, Pincement riemannien et pincement holomorphe, Ann. Scuola Norm. Sup. Pisa 14 (1960), p. 151-159.
- [2] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Differential Geometry 4 (1970), p. 155-169.
- [3] J. Bureš, J. Vanžura, Metric polynomial structure, Kodai Math. Sem. Rep. 27 (1976), p. 345-352.
- [4] S. Kobayashi, K. Nomizu. Foundations of differential geometry, vols I and II, Interscience Publishers 1963, 1969.
- [5] B. Opozda, A theorem on metric polynomial structures, Ann. Polon. Math. 41 (1983), p. 139-147.

Reçu par la Rédaction le 15.03.1979