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The f-sectional curvature of f-Kaehlerian manifolds

by BarBaRA OpozDA (Krakow)

Abstract. Analogously to the Kaehlerian case, we introduce the notion of f-Kaehlerian
manifold, where f is a metric polynomial structure, and consider the sectional curvature by
planes invariant by f.

0. Let (M, g) be a connected Riemannian manifold and let f be a (1, 1)-
tensor field on M satisfying the condition g(fX, fY)=g(X, Y) for any
tangent vectors X and Y. The Riemannian connection defined by the metric
tensor g will be denoted by V. If V'f =0 then (M, g, /) will be called an
f-Kaehlerian manifold. Of course, if (M, g, f) is an f~Kaehlerian manifold. then
f is a metric polynomial structure in the sense of [3]. An f-Kaehlerian
manifold will be called of type I, II, 1II or IV if the metric polynomial
structure fis of type I, I, III or IV, respectively, i.e., the minimal polynomial
P(&) of fis

(D PE)=(+2a,¢+1) ... (¥ +2a,E+ 1),
(I P =(¢-1)(*+2a,¢{+1) ... (§*+2a,-, L+,
(D) P& =(E+1) (% +2a, E+1) ... (E2+2a,_, E+ 1),
(IV) P =@E-1(E+1)(E+2a,E+1) ... (6> +2a,,E+1),

where a? <1 and q; # a; for i # j.

Recall that the almost product structure D =(D,, ..., D,) associated
with f has projectors P,, ..., P, which are polynomials in f, [3]. It follows
that D is f-invariant and parallel with respect to V.

Since the connection V is without torsion, f and D are integrable.

The almost product structure D is orthogonal, ie., distributions
D,, ..., D, are mutually orthogonal, [5].

For the tensor field f we associate the (1, 1)-tensor field defined by

J= Z ﬁail P;,

i=1 \/l—a,-z

where I is the identity tensor field on M. It is easy to check that J satisfies
the equation J>—J = 0 and J is an almost complex structure if only f is of
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type 1. For an f-Kaehlerian manifold of type I its metric is Hermitian with
respect to J, [5], and consequently, (M, g, J) is Kaehlerian.

It would be of some interest to note that what is called an f-structure,
ie. a (1, 1)-tensor field satisfying the equation > —/f = 0, may be considered
as a metric polynomial structure. Namely, defining f by f = P+f, where P
denotes the projector on the distribution on which f vanishes, f is a metric
polynomial structure and Ff = 0 if and only if Ff = 0. For instance, if f is a
¢ -structure (see [2]), M is f-Kachlerian.

As usual, R will denote the curvature tensor of F, i.e. the tensor feld of
type (1, 3) defined by R(X, Y)Z =[VyVy]Z—V(xy, Z for any vector fields
X, Y, 2

R will also denote the Riemannian curvature tensor field, i.e. the tensor
field of type (0, 4) defined as R(X, Y, Z, W) =g(R(Z, W)Y, X) for vectors
X, Y, Z W

If X and Y form an orthonormal basis of a plane p in the tangent space
T. M, then the sectional curvature K(p) of p is given by g(R(X, Y)Y, X). If
(M, g,f) is an f-Kaehlerian manifold and p is an f-invariant plane in T, M,
then the curvature K (p) will be called the f-sectional curvature by p. If { is an
almost complex structure, then the f-sectional curvature is the holomorphic
sectional curvature.

By an integral manifold of a distribution we shall always mean a con-
nected integral manifold.

If X is a vector field and T is a distribution, then the notation XeT
means that X, e T, for every point x belonging to the domain of X.

1. ProposiTioN 1. Let T =(T,, ..., T,) be an orthogonal almost product
structure’ parallel with respect to V. Then R(X, Y, Z, W) =0 provided that
two of the tangent vectors X, Y, Z, W belong to different distributions of T.

Proof. Since the almost product structure T is parallel with respect to
V,VxYeT, 1 <i<m provided YeT. Hence if YeT, then R(Z, W)YeT,
for any tangent vectors Z, W. Let XeT, YeT apd i#j Since
R(X,Y,Z, W)=g(R(Z, W)Y, X) and T, is orthogonal to T, we have
R(X,Y,.Z W)y=0. But R(X,Y, Z, W)=R(Z, W, X, Y), and so if ZeT,
and WeT, where i #j, then R(X, Y, Z, W) =0. Now, it is sufficient to
consider the case where X, Ye T, Z, WeT, and i #j. It is known that R
satisfies the identity

R(X,Y.Z, W)= —-R(X,Z,W,Y)—R(X, W, Y, Z).
But R(X,Z, W, Y)=0and R(X, W, Y, Z) = 0 by the first part of the proof.
Hence R(X, Y. Z, W)=0.
PropoSITION 2. Let f be a metric polynomial structure on M. If [ is of type

L, 11, or 111, then for every f-invariant plane p = T. M, there exists an 1 <i<s
such that p < D;,.
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If fis of type IV and p is an f-invariant plane in T .M. then
pc D,.® D, or there exists an 3 <i<s such that p < D,,.

Proof. It is sufficient to consider a metric polynomial structure of
type IV.

We set T,=D,®D,, T,=D,;® ...® D,. Let pcT.M be an
f-invariant plane. If there is a vector Yep, Y #0and YeT,,. then Y and fY
belong to pr T;,. Vectors Y and fY are linearly independent and p is a
2-dimensional vector space; hence p < T,,.

Suppose now that there is a vector X €p such that

(l) X=X1+X2+X3, where X]EDlx, Xzesz, X3€T2_\.

and X;+X,#0.
Then we have

(2) S(X) = X1 - X, +/(Xy).

By equalities (1) and (2) and by the obvious fact that X +f(X)ep, we have
(3) 2X,+ X3 +f(Xy)ep.

Since f(2X,+ X3+/f(X,))ep, we obtain

@ 2X +f(X3)+/ 2 (X3)ep.

By equalities (3) and (4), we have X3 —/?(X;)ep. But X, + X, # 0. and thus
X,+X,+X;3¢T,,. This means that p ¢ 7, and by the first part of the-
proofl X,—f2(X;) =0. Therefore, by the definition of T,, we see that
X3 = 0. Consequently p < T,.

Suppose now that p < T,,. Notice first that if pn D, # 0!, then
pc D;.. In fact, let X #0 and Xepn D,,. The vectors X and f(X) are
linearly independent, and hence X, f(X) is a basis in p. Therefore p < D,,.
Let X be a vector such that Xep, X = X3+ ... + X,, X;€D,,, ..., X,eD,,,
and there exist i # j, 3 < i, j < s such that X; # 0, X; # 0. It is obvious that
if a plane is f-invariant then it is also f~'-invariant. Hence f~'(X;)+ ...
...+ H(X,)€ep. Since '

fHX) = —f(X)—2a-, X, 3<k<s,
wc obtain
—f(XS)—zal X3_"'—f(Xs)—2as—2Xsep'

But f(X3)+ ... +f(X,)ep and thus a, X3+ ... +a,_, X,ep. Since X; #0,
X;#0 and q;_, # a;_,, vectors X3+ ...+ X, and a; X3+ ... +4a,_, X, are
linearly independent. Consequently, there are numbers f and y such that

X3+ . +f(X)=B(Xs+ ...+ X)+7(a; X3+ ... +a,_, X))
=PB+ya) X3+ ... +(B+ya,_ ) X,.

)\ — Annales Polonici Mathematici XLIIL2
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Since X,eD,, and f(X,)eD,,, f(X,) = (B+7ya,-) X, for every k=3, ..., s.
On the other hand, vectors X; and f(X;) are linearly independent. Hence the
contradiction and this completes the proof.

It 1s trivial that if a plane p is included in D;, and fis not a multiple of
indentity on D; then p is f-invariant if and only if p is J-invariant.

Observe also that if a plane p is f-invariant and p = D,, ® D,,, then
pc Dy, or pc D,,, or pis spanned by vectors X,eD,, and X,eD,,. In
fact, if p4 D,,, and p & D,,, then there is a vector Xep, X = X, + X,
where 0# X,eD,,,0+# X,eD,,. Since p is f-invariant, X,-—X,ep.
Therefore, X,ep and X,ep. This means that X,, X, is a basis in p.
Conversely, if 0 # X,eD,,, 0+# X,eD,,, then a plane spanned by vectors
X,, X, is f-invariant. Notice also that if dim D, > 2,i=1, ..., 5, then there
exists an f-invariant plane in D, , xe M.

The following versions of Schur’s theorems are known:

THeOREM 3. Let (M, g) be a connected Riemannian manifold of dimension
n = 3. If the sectional curvature K (p), where p is a plane in T, M depends only

on x, then M is a space of constant curvature.

THEOREM 4. Let (M, g, J) be a connected Kaehlerian manifold of complex
dimension n 2= 2. If the holomorphic sectional curvature K(p), where p is a
plane in T, M, depends only on x, then M is a space of constant holomorphic
sectional curvature.

We now prove an f-Kaehlerian analogue of Schur’s theorem. We shall
first prove the following

THEOREM 5. Let (M, g,f) be a connected f-Kaehlerian manifold. If for
some 1 <i<s dim D, > 3 and if the f-sectional curvature K (p), where p is an
f-invariant plane in D;,, depends only on x, then there exists a number ¢ such
that K(p) = c for every f-invariant plane p < D, and xe M.

Proof. Since M is connected, it suffices to show that for every xe M
there is a neighbourhood U and a number ¢ such that K(p) = ¢ for every
f-invariant plane p D;, and yeU. In the proof of this statement we shall
use the following

LEMMA. Let (M, g, f) be an f-Kaehlerian manifold. Let T=(T,, ..., T,)
be an almost product structure on M the projectors of which are polynomials in
f. Then every integral manifold N; of distribution T,,i=1, ..., m, with the
metric tensor g; which is the restriction of g to N; and with the tensor field f;
which is the restriction of f to N, is an f;-Kaehlerian manifold. Moreover, for
any plane p = T_N;, xe N;, K;(p) = K(p), where K,(p) is the sectional curva-
ture by p on N;.

Proof of Lemma. Since the almost product structure is f~invariant, the
restriction f; of f to an integral manifold N; is well defined. Let Q,, ..., Q,, be
projectors of T. As polynomials in f, Q;, i = 1, ..., m, are parallel with respect
to V. Therefore, if V' denotes the Riemannian connection defined by g;, Fx Y
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= Vy Y for any vector fields X, Yon N;. Using this fact, we infer that for any
vector fields X, Y on N;

VR RY =V (i —fi(FxY) = Vx(fV) =S (Vx Y) = (Vxf) Y =0.

Hence (N;, g;, f) is an f;-Kaehlerian manifold.
If R; denotes the curvature tensor of V’, then R,(X, Y)Z=R(X,Y)Z
for all vector fields X, Y, Z on N;, because

Ri(x Y)Z = [Vi V;]Z—V{xnz =[Fx VY]Z—V[an

Consequently, if p is a plane in T,N;, then K(p)=g;(R;(X, Y)Y, X)
=g(R(X, Y)Y, X) = K(p), where X, Y is an orthonormal basis in p. Th.lS
finishes the proof of the lemma.

Now we go back to the proof of our theorem.

The tensor field f is 0-deformable, and so there is a matrix FeGL(n, R)
such that the Jordan canonical form of f, is equal to F for all xe M. Since f
is integrable, for every x of M there exists a chart (U, ¢ =(x', ..., x") such
that d,@of,0d,, ¢ ' =F for every yeU. A chart chosen in this way is
called a chart associated with the integrable tensor field f. The same chart is
also associated with the integrable almost product structure D, because its
projectors are polynomials in f.

Let xe M and let (U, ¢ =(x', ..., x") be a chart associated with the
integrable tensor field f and, moreover, let ¢(x) = 0eR". Then there are
vector subspaces R, i = 1, ..., 5, in R" satisfying the equality R” = d, ¢(D,)
for ye U. The projection in R" onto R® will be denoted by P¥. Of course, U
can be chosen so that o(U) =V, x ... xV, where V,,i = 1, ..., s, are neigh-
bourhoods of 0 in R?. Then M, = ¢ (Y. P?¢(y))+V;) is an integrable

i #i
manifold of D; through yeU. In particuiar, M;, = ¢ (V) and we shall
denote U; = M,,.

If f is a multiple of identity on D, then (U,, g,) has a constant sectional

curvature by Theorem 3. By Theorem 4, if f is not a multiple of identity on

I
D;, then (U,-, gi,Ji = f‘/ii) is a Kaehlerian manifold with a constant

vV l—a,-
holomorphic sectional curvature. Hence, by the remarks made after
Proposition 2, it is seen that (U, g;,f;) is an f;,-Kaehlerian manifold of
constant sectional curvature, say c.
Consider mappings

=9 'oPP0p: U-U, r=1,..,s.

The restriction ¢ |y, : M — U, is a diffefomorphism. It is also an isometry
(with respect to the” restrictions of g to M, and U ). In fact, takmg X;

= ¢/0x', X; = ¢/0X e D,, we have d, §"(X)) = (,;,r( »’ ¢ (X) = 1("( » and

(P"0@) (¢ (2)) = (P” o) (z). Therefore, it suffices to show that if X,
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= l“/(“\'k EDm, Where n -';t r, then Xk (g(x., XJ)) = 0. SIHCC Vx. X" = Vx. X.'
=0, [5], and ¢ is parallel with respect to ¥, we have

X,‘(g(X,-, Xj)) = ka(y(Xia Xj)) =9(Vx, X, Xj)+g(X|'9 Vx,,Xj) =0.

The map ¢" has the following property: d, ¢" of, =f6,mod, ¢ for yeU. We
have

dy @ 0 fy =dpn,,, @ OP"0d, 00,
= dpnigyy @~ OF0P0dy 0
= -1 -1 r)
= oy @ OF0dy  @)oldy, 07 O P"od, )
=S 04y @

This means that if p < D,y is an f-invariant plane in D,y then d, ¢ (p) is also
f-invariant. By virtue of Lemma, and by the fact that ¢" |y, is an isometry, it
follows that K(p) = K(d, @(p)) = ¢. Hence the proof is completed.
CoroLLARY 6. Let (M, g.f) be an f-Kaehlerian manifold. Assume that
there is an 1 <i<s such that dim D; > 3, where D =(D,, ..., D,) is the
almost product structure associated with f. If the f-sectional curvature K (p),
where p is an f-invariant plane in T, M, depends only on x, then the f-sectional

curvature is constant on M. Moreover, if f is of type 1V, the f-sectional
curvature vanishes on M.

Proof. The first part of the assertion immediately follows from
Theorem 5. Now let f be of type IV and let X,eD,,, X, €D,, be unit
vectors. As we have already remarked, X,, X, span an f-invariant plane p in
T.M. Since D, and D, are orthogonal, K(p) = R(X,, X,, X,, X;). By
Proposition 1, K(p) =0, and this completes the proof.

2. An f-Kaehlerian manifold (M, g, f) will be called é-f-pinched if there
is a positive number A such that §4 < K(p) < A, for all planes p invariant
by f. If f1s an almost complex structure then a é-f-pinched manifold is said
to be o-holomorphically pinched. Notice also that a J-f-pinched f-Kaehlerian
manifold with é > 0 is not of type IV.

We now give a number of implications of the pinching assumptions.

THeorReM 7. For a d-f-pinched f-Kaehlerian manifold (M, g, f), with

0 > 1/2, the decomposition of the tangent space T.M = @ D, associated with
i=1

fis the de Rham decomposition of T, M with respect to g.

Moreover, if there are wectors in T, M which are fixed by the restricted
linear holonomy group \y(x), then fis of type Il or 111, D,, is a set of all such
vectors and dim D, = 1.

Proofl. We shall first show that if f is not a multiple of identity on D;
and, for every hey(x), h(X) = X, then X = 0. As usual, let M,, denote the
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integral manifold of D; through x and g; the restriction of the metric tensor ¢
to M;,. Then (M,,, g;, J;) is Kaehlerian, where
_fln,-y +a; IID.-y

; S for veM
) /— !
SRNA

Furthermore, M;, is -holomorphically pinched. It is known, see [1]. that a
3-holomorphically pinched Kaehlerian manifold has positive delinite Ricci
tensor. On the other hand, we have the following

THeOREM ([4], vol. II, p. 173). Let (M, g, J) be a Kaehlerian manifold. If
the Ricci tensor is non-degenerate at some point of M, then the restricted linear
holonomy group Wy (x) at x contains J,.

Hence J;, €' (x), where y/(x) is the restricted linear holonomy group at
x of the Riemannian connection F*. Therefore, the tensor field J; delined as

JP,+ Y P; belongs to y(x). But J; does not fix any non-zero vector of D,,,
i#j '
and hence X = 0.

Considering again D; on which f is not a multiple of identity, suppose
that there is a non-trivial subspace S, in D, invariant by ¥ (x). Let S, be the
orthogonal complement of S, in T, M. §' is also invariant by ¥ (x). Let S and
S’ denote distributions on M obtained from S, and S’ by parallel displace-
ment to each point of M. Choose vectors X,€eS,, X,€S, such that
g(X,, X,) =g(X,, X;) =1. Let p be the plane spanned by vectors X, + X,
JX,+JX,. We have J(X;+X,) =J,(X,+X,)=J;(X))+J;(X,). Since
Ji.ey(x), J,(X,)eS, and J, (X;)eS.. It is clear that J,(X,) =J(X,) and
J;(X,) = J(X;). Therefore, \/ixl, '2J(X,) is an orthonormal basis for an
f-invariant plane p, < §, and \/5 X,, \,"EJ (X,) is an orthonormal basis for
an f-invariant plane p, < §’. By virtue of Proposition 1, we obtain

K(p)=R(Xl+X2, JX1+JX2, X1+X2,JX1+JX2)

1 1 1 1
~R (72 W2, T3 (2K (X, W2rx) )+
R - 1, - -
+R (;—2 2K (WK 2 (2 (V)

(]

=1 K(p)+3 K(py).

On the other hand, K(p) > 64 >4 A4 for some constant A4 and K(p,) < A,
K(p,) < A. Hence $4 < K(p) < $ A, which is a contradiction. This means
that ¥ (x) is irreducible on D,,.

Now suppose that (x) is reducible on D,, and f is a multiple of
identity on D,. As in the previous case, there is an almost product structure
(S, S, D,, ..., D)) satisfying the assumptions of Proposition 1. Therefore, for
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any vectors X,€S,, X,;€eS8,, R(X{, X3, X;, X;)=0. So K(p) =0 for the
f-invariant plane spanned by X, and X,. Hence a contradiction.

The second part of the assertion follows immediately from the above
proof.

Remark. If an f-Kaehlerian manifold is of type I and is d-f-pinched,

1 .
with 6 > 0, then the associated Kaehlerian manifold is 2 0-holomorphically

pinched. In fact, let XeT,M and g(X, X)=1. Then X = ) X;, where

i=1

k
X,eD,,. Assume that g(X;, X)=B;>0,i=1,...,k<sand ) B;=1 We
have i=1

R(X,JX, X, JX)= Y R(X;, JX;, X;, JX)
i=1

k 1 1 1 1 |
- BI2 R (— Xl" J ( Xl')’ Xl" J (— Xl'))'
2R\ g X\ ) 75 N\ B,

k
1
It is clear that Y B} <1 and there is 1 <i, < k such that B, > < Hence
=

1
—0A<R(X,JX, X,JX)< A for some constant A and every vector
s :

XeT M.

The following Kaehlerian version of Myers theorem is known

THEOREM 8. A complete 6-holomorphically pinched Kaehlerian manifold,
with 6 > 0, is compact and simply connected.

By this theorem and by the last Remark it can be seen that a complete
o--pinched f-Kaehlerian of type I with 6 > 0 is compact and simply con-
nected. As for the general case, this assertion is not true. For instance, let M
be a 0 < §-holomorphically pinched Kaehlerian manifold. Then R x M, with
the product metric and with the metric polynomial structure M which is a
direct product of the identity (1, 1)-tensor field on R and the almost complex
structure on M, is a 0 < d--pinched f-Kaehlerian manifold and it is not
compact.

However, using the saime idea as in the proof of the theorem of Myers,
we obtain '

THEOREM 9. A complete f-Kaehlerian manifold whose f-sectional curvature
is bounded away from zero and for which dim D, > 2 is compact.

Proof. We outline the proof given in [4], vol. I, p. 88, making the
necessary changes.

The theorem is to be proved for f-Kachlerian manifolds of type II or III.
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Recall that if 7 is a geodesic in M, then two points x and y on t are said
to be conjugate to each other along 7 if there exists a non-zero Jacobi field X
along 7 which vanishes both at x and at y.

Next we shall use the following theorems:

THEOREM 10. Let 1 = x,, a <t < b, be a geodesic in M such that x, has
no conjugate point along v = x, for a <t < b. If X is a piecewise differentiable
vector field along t vanishing at x, and x, and perpendicular to 1, then

b

flg(FPX, vX)—g(R(X, )%, X))dt > 0.

THEOREM 11. Let T = x,, a <t < b, be a geodesic. If there is a conjugate
point x., where a <c < b, of x,, then t is not a minimizing geodesic joining x,
to x,.

Let x and y be arbitrary points of M and let t =x, a<r<b, be a
minimizing geodesic joining x to y. Such a geodesic exists because (M, g) is
complete. By Theorem 11, x, has no conjugate point along t for a <t <b.
Let a <c<b. The vector field 7 can be decomposed into the sum
i=X;+...+X,, where X;eD;. Of course, vector fields X,,..., X, are
parallel along t. Let Y, be a vector field belonging to D, parallel along T,
perpendicular to ¢ and such that g(Y;, Y;) =g(X,, X,). Now define
Y=Y,+JX,+...+JX,. Then Y is parallel along 7 and g(Y, Y) = 1. If K(p)
>6>0 for some number & and for any f-invariant plane p, then

1
R(Y, 1, Y,r‘);;;é. Now let a(t) be a non-zero function such that

a(a) = a(c) = 0. By virtue of Theorem 10, we have

0

N

(g(VaY, VaY)—R(aY, ¢, a¥, ©))dt

(@'Y, 0’ Y)—a?R(Y, 2, Y, ©))dt

1
) 6&2) dt.

Il

I
Ry ® Dy A D S, O

TN
12
™
|

N

t_
Taking a(t) =sin (f—a), we obtain c¢—a < n/\/(1/s*)6 for every a<c

< b. Consequently, b—a < n/\/(1/s*) 8. This means that M is bounded. On
the other hand, M is complete. Hence it is compact.

Remark. Theorem 7 holds under weaker assumptions than those given
above. Namely, we may assume that there are positive numbers A,, ..., A,
and numbers 0, ..., d, such that if an f-invariant plane p is contained in D,
then 6;4; < K(p) < 4; and we shall say that (M, g,f) is (04, ..., O9)-f-
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pinched. If 9, > 1/2, i =1, ..., s, in the case where f is of type I or o; >0
and §, > 1/2, i=2, ..., s, in the case where [ is of type II or III, then we
obtain the assertion of Theorem 7 without changing the prool.

Note that, since A,, ..., A, > 0, by replacing the metric tensor g by g
defined as

1 1
gXi+ ...+ X, Y,+...+Ys)=;—g(X,, Y))+ +Z g(X,, Y,

1

where X, Y eD,,

we obtain an f-Kaehlerian manifold (M, g, f). Moreover, if (M, g,f) is
(84, ..., 0,)-f-pinched and f is not of type 1V, then (M, g, f) is d-f-pinched,
where 4 = min (§,, ..., d,). Hence, if é,,...,5,>0 and f is of type I, then
(M, g,f) is 0 <Jd-f-pinched and consequently M is simply connected and
compact providing (M, g) is complete.

Assume now that (M, ¢, /) i1s a complete, simply connected f~-Kaehlerian
manifold. Let M,,i=1,...,s, denote the maximal integral manifold of D,
through a fixed point of M. It is known (as in the case of the de Rham
decomposition, [4], vol. I, Chapter IV, § 6) that there is an isometry F
=(py,....p): M —> M, x... xM, having the following property: if a vector
field X equals X, + ...+ X, where X;eD,,, then d, p;,(X) is obtained by the
composition of parallel displacements of X;, first along a curve in M with
-respect to V, and then along a curve in M, with respect to V. Since Vf =0
and, by virtue of Lemma in the proof of Theorem 5, V'f, =0, we have
dFo f|p, = fiodF and consequently dF of =(f) x...xf)odF. Therefore, a
complete, simple connected f-Kaehlerian manifold is a “product” of integral
manifolds of the almost product structure associated with f.
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