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Periodic solutions of z''+ f(x)z™ + g(x) = 0
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1. Recently Sedziwy [4] has shown that the equation
&'+ f(@) 2™ g(x) = up(?)

has at least one periodic solution with period « provided » > 1 is an
integer, all coefficients are continuous, zg(x). >0 for 2 # 0,

r

im [g(u)du > o, limsupg(@)/z =6, 0<b<f(?)<o< oo

|Z|—>00 ¢ T—>—00

for all z, p(t+ w) = p(t) and |u| is sufficiently small. This is achieved by
showing that these hypotheses imply that

(1) "' +f(@ya™" 4 g(x) =0

has periodic solutions with distinet positive periods.

In this paper we will show that (1) has numerous periodic solutions
under different hypotheses than those of Sedziwy. However, we are
unable to conclude that periodic solutions have distinct periods and
for this reason do not secure the corresponding theorem for the forced
equations. In a second theorem we give similar hypotheses to infer that
solutions of

2) @'+ f(e)a™ J-g(z) =0

are bounded and remark that not only is the periodicity of solutions
impossible to conclude but, under these hypotheses, so is the oscillation
of solutions.

Equations of the form (1) and (2) have been studied recently by
the author [5], [6], [7], DiAntonio [1] and others. These equations, which
are physically significant (cf., for example, [2], [7], [8] and references
therein), provide a rich source of interesting dynamical systems when
considered in the z, z'-phase plane. Equations

”2Zn
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" +F(x')+G(z) = E(1)
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describing the motion of a particle with one degree of freedom are exten-
sively studied and frequently provide examples of periodic phenomena

(cf., for example, the numerous papers of Rolf Reissig on this subject
of which [3] is an instance).

2. In the sequel we will always assume that the functions f(x), g(x)
are continuous for all real z.

THEOREM 1. If zg(x) >0 for  #0,0 < b < f(x) for some real b,
|g(x)| > ¢ > 0 for x sufficiently large and if limg(x)/x = a +# 0, equation (1)

z—>0

has periodic solutions. In particular, any solution of (1) with initial condi-
tions 2(0) = —m?, x'(0) = 0 is periodic.

Proof. Let x = z(t) satisfy (1) and set v = dz/dt to secure the equation
dv 2n
(3) Lo +f(@)v"+g(z) = 0.

Now, in (3) set z = v? to secure
dz

(4) — = —2f (@) —2g (o)
and consider the vector field determined in the z, 2-plane by equation (4).
The points at which dz/dz = 0 lie on a curve 2" = —g(z)/f(z). If n is

odd, the curve is in the second and fourth quadrants. If = is even the
curve is symmetric with respect to the x-axis and lies in the second and
third quadrants but in both cases the curve contains the point (x = 0,
2z = 0). Let 2 = F(x) denote the second quadrant portion of this curve
in both cases. In particular, F is a single-valued function defined for
z<0,F(0) =0 and F(zx) >0 for z <O0.

We now select m > 0 and consider the point P, (x, = —m?, z, = 0)
in the x, 2-plane. At P,, dz/dx > 0 and since dz/dz > 0 for z < 0,2 < F (z)
it is clear that the trajectory determined by P, rises to meet z = F(x)
at a point P, (#, < 0,2, >0), where dz/dz = 0.

For points in the region A (r < 0,2z > F(x)) one has dz/de < 0 and
the trajeotory falls to meet the z-axis at a point P, (r, = 0, 2, > 0) unless
it turns into the origin (in which case z, = 0). That this is not possible
and that 2z, > 0 is seen by eéxamining the vector field in, and on the
boundary of, 4.

First, we observe that

- 1/n
70 = tim 2@ _ jim i( "’(‘”)) =
z=0— & z-0- T \ f(@)
since lim g(z)/r = @ # 0 and 0 < b < f(x). On the other hand,
0

dz
lim — = —2f(0)z"
lim =~ = —2f(0)
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which is bounded from below in any neighborhood of the origin. Thus,
the trajectory does not turn to the origin and so must fall to a cutting
of the z-axis at z, > 0.

Continuing into the first quadrant, # > 0,2z > 0, one has dz/dz < 0
and so the trajectory is falling toward the z-axis. It cannot turn toward
.the origin because dz/dx < 0. Since the trajectory does not turn toward
the origin, it either cuts the xz-axis or 2 — p > 0 and dz/dz — 0 as 2 — oo.
The latter case is impossible since as x — oo,

—z< —2bp"—e < —e <0

dx

to contradict dz/dz — 0. Thus, the trajectory cuts the z-axis at some
point P, (23 > 0,2, = 0). )

For the initial conditions a, = —m?2, 2, = 0 one secures a solution
z(x) of (4) such that z(—m?) = z(2;) = 0, 2(x) > 0 for —m? < z < v, and
2?2 = z(z) is a simple closed curve in the x, v-plane representing the path
of a periodic orbit of the system

(8) o' =0, = —f(2)v""—g(a)

to prove the theorem.

From the form of the system of equations (5) one could have seen.
immediately that if the vector (z’, ') corresponds to the point (z,v),
then the vector (—&', v') corresponds to the point (z, —v) and so the
trajectories are symmetric with respect to the z-axis. One can even see,
initially, that the motion is in a clockwise direction about any simple
closed trajectory with the singularity (0, 0) in its interior. The substance:
of the proof was to show that some trajectories are closed by showing
that they meet the z-axis twice.

By contrast with Theorem 1, for m odd we have the following theorem,
where, as before, f(x), g(x) are assumed continuous for all real z.

THEOREM 2. If in equation (2) we assume thal xg(x) >0, f(x)=>0
for all real © and

x
fg(u)du -> 00 as |z| - oo,
0

then any solution of (2) defined for all large t is bounded.

With these hypotheses, which for f(x), g(«) are comparable and weaker
than those of Theorem 1, it is not possible to conclude that solutions
even oscillate as is easily seen from linear cases. For example, if f(x)
=p >0 and g(x) = qr,q >0, then for » =1 the hypotheses of the
theorem are satisfied but no solution oscillates if p2—4¢ > 0. In fact,
one can see from the linear case the importance of the even exponent
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in the Sedziwy theorem since the linear equation, above, satisfies all
other hypotheses of his theorem.

If one replaces 2™ in (2) by an odd-like function, the proof of
Theorem 2 is no more difficult. By doing so one includes numerous other
significant equations. For these reasons we will prove the following theorem
to which Theorem 2 is a corollary.

THEOREM 3. If in &'' 4 f(2) M (z')+ g(x) = 0 we assume that f(x), g(x)
are continuous, xg(x) >0 for x # 0, f(x) =0 for all real z,

T
fg(u)du —> 00 as |2 > o
0

and zM (2) = 0 for all real 2z, then any solution of the equation valid for all
large t is bounded.

Proof. Write the given equation as the system
o =v, o =—f(@)M(v)—g()

and consider the positive definite scale function

z
B = 2fg(u)du+v2.
0

Since
EE =g@)a'+v = —of(x)M(v) <O

all solutions are bounded and the theorem is proved.
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