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On the tangency of sets in metric spaces

by J. GrocHULsKI, T. KoNIK and M. TKACZ (GZestochowa)

Abstract. The present paper deals with the connections between tangency rela-
tions of sets in metric space (¥, g) and (#, g’), the tangency relations under consider-
ation being defined by functions g; (¢ = 0,1, ..., 7) introduced in the introduction.

In Section 1 the so-called condition of rings for a metric space (F, g) is intro-
duced and certain conditions for the occurrence of tangency of sets defined by the

functions g, and ¢, in metric spaces (E, ¢) and (¥, o) are established under the assump-
tion that

me(z,y) < o' (%,y) < Mo(z,y) for z,y€ekE,

where 0 < m < M. In Section 2 we consider the connection between tangency re-
lations defined by the functions g; (¢ = 0, 1, ..., 7)in metric space (&, ¢) and (E, o)
if metrics p and o’ satisfy the condition ¢’ (x, y) = f(e(x, y)), for z,y € E, where f is

an increasing real function such that f (r)——>0
By =0

Introduction. In the present paper we consider connections between
tangency relations of sets in metric spaces (¥, ¢) and (¥, ¢'). In paper
[6] W. Waliszewski has introduced the following definition of the tangency

relation in a space (E,1):

Ta,b, k,p) = {(A,B): (AUB) c E and (4, B) is (a, b)
1
— clustered at p e E andTTI(AnSl(p, Pairys BOSH (D, 7)yn) —> O},
0y

where [ is a positive real number, ! is a real non-negative function defincd
on the Cartesian product E, xE, (E, is a family of all non-empty sub-
sets of the set F) and a, b are certain non-negative real functions defined
in the right-hand side nelghbou_rhood of 0 such that a(r)—>0 b(r)—)O

L == [3&im -]

We say that a pair of sets (4, B) are (a, b)-clustered at & pomt P
of the space (X, 1) if 0 is a cluster point of the set of all the real numbers
r > 0 such that the sets ANS;(p,7),,) and BNS(p,7),, are non-empty.
By definition (see [6]), 8;(p, ), denotes the neighbourhood of the sphere

8,(p, r) with centre at p and radius », defined as the union |J K,(q, %),
a€Sy(p,1)
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where K, (q, «) is the open ball with centre at ¢ and radius % in the space
(B, ).

If (A, B)eT)(a, b, %k, p), then we say that the set A is (a, b)-tan-
gent of order k to the set B at the point p.

In the present paper we shall consider the functions ¢; (¢ =0,1,...
...y 7) being special cases of the function ! (see [6]). These functions are
induced by the metric p and are defined as follows:

0o(4, B) = sup{e(w, B); v € 4},

¢:(4, B) = max{g,(4, B), e(B, 4)},

es(4, B) = min{g,(4, B), ¢,(B, 4)},

0s(4, B) = inf{diam,({z}UB); = € A},

es(4, B) = max{gs(4, B), o:(B, 4)},

os(4, B) = min{gy(4, B), ¢(B, 4)},

(4, B) = inf{o(x, B); v € 4},

0,(4, B) = diam,(AUB)

for A, BeB,, where ¢(z, B) =in§ e(z,y) and diam,A denotes the
ve

diameter of the set A in the metric space (Z, g).

In Section 1 we investigate connections between tangency relations
defined by the functions g; and g, in the metric spaces (%, ¢) and (E, ¢’)
if the metrics ¢ and o’ are connected by a certain inequality. In Section 2
we consider connections between tangency relations defined by the
functions ¢; (¢ = 0,1, ..., 7) in the metric spaces (¥, ¢) and (Z, o’) in
the case where one metric is equal to the other composed with & certain
real function.

1. Let F be any set and let o be a metric on E. We say that the metric
space (F, o) satisfies the condition of rings at the point p € E if there exists
a real number u > 0 such that

(1) 8,(pyr)y = weBjr—u<o(p,2) <r+u} for r,ue(0,p).

If the space (E, o) satisfies the condition of rings at any point p € K,
then we say that the space satisfies the condition of rings. Let us consider
two metric spaces (E, o) and (E, o’) and assume that the metrics ¢ and o’
satisfy the condition

(2) there exist real numbers m, M (0 < m < M) such that me(z, y)
< o'(z,y)< Mo(w, y) for »,y e E.

Let us put ¢ = min(m, 1/ M, m/M),n =1/c.
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Let F,, 5 be the class of increasing non-negative real functions defined
in a certain right-hand side neighbourhood of 0 fulfilling the conditions:
(i) a(r)—=>0,
there exists a number A > 0 such that
(i) max (inf {a(tr) —ta(r); (¢,7) € o, ) X(0, A)},
inf {ta(r) —a(tr); (¢, 7) € <°'7 7) %(0, l)}) =0,
(iii) inf{a(t,r)—a(t,r)—(tar —t,7)58, > 1,
and (i, 7), (t, r) € (o, ) xX(0, A)} = 0.

LemMA 1. If functions a, b belong to F,, 5, condition (2) is fulfilled
and the space (E, o') satisfies the condition of rings at the point p € E, then
for any sets A c E,B c E, (a,b)-clustered at the point p, the relation
(A, B) e Tos(a, b, k, p) implies (A, B) € To4(a, b, k, p).

Proof. Let (4, B) e Tos(a, b, k, p). Then
(3) ':Tinfle(m) y); LS (Ansq(p7 r)a(r))) Yye (anq(p7 r)b(r;)l 0.

r—0 +

Let »’ be a number which satisfies the inequalities

mr <r' < Mr.
From (3) we have

1 ’
(3) at{ete, 050 < (4082, 7). )
M

‘rl
ve(Eosle gl 7=
M

ie.,

1 . r
(4) W‘m-fié‘(m’ y),we(AnSo (pyﬂ)a(% ))

»
Y€ (BOSO D, E)b(%))} _17-:0-4_) 0.

Let us put 4 = min(u, 4, M1), where yx is a number such that (1) is sat-
isfied for », u € (0, x), 4 is a number such that (ii) and (iii) are fulfilled.
‘We shall prove that

(5) SO (p’ %)a (-’.,_) C(Sql(p, ?")a(,:)) fOl‘ 7" € (O, 6).
M
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Let ¢ € 8,(p, 7'/ M)gpnr)- It is easy to prove that

’

(6) ;{ —a(—%[-)<g(p,w)<rﬂ+a(—}t—).
Let
(7) inf{a(tr) —ta(r); (¢, r) € (o, n) X(0, A)}
< inf{ta(r) —a(tr); (¢, r) € (o, ) X (0, A)}.

From (iil) it results that
r’ r’ 1 1
a (%—)—a(—ﬁ) > (—5@- —-M-) r’  for r' €(0,4).
Hence

(8)

From (6) and (8) we get

r

fz)comn< o)
pat m<9p,:v)<M aM.

Hence and from (7) we have

7’ a(r’) r’ a(r’) ,
po” '(m <g(p,w)<E+—(ﬂ—[—— for ' €(0, ).

Therefore

(9) Mo(p,z) <r'+a(r’y and me(p,x)>r —a(r).
From (2) and (9) we have
(10) r'—a(ry< o' (p,2) < +a(r) for r €(0,4).
Hence
2 €8y (P, 7 )sey for v e(0, d).
Let us now suppose that
(11) inf {a(tr) —ta(r); (¢, r) € {o, > X(0, 4)}

> inf {ta(r) — a(ir); (¢, ) € (o, 7> X(0, A)}.
From (6) and (2) we have

M
From (11) and (12) we obtain

(12) ﬂr’—ma v <o(p,ov)<r'+Ma r
M ) e p’ M *

m mr' ,
(13) ﬂr’—a( U )< o' (p,2)<r'+a(r) for »' e(0, MA).
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From (iii) we get

m

m
ET'—G (E r') >r'—a(r’) for ' €(0,4).

Hence, and from (13) it follows that
r—a(r) < o' (p, ) <r'+a(r) for ' (0, min(i, MA)).
Consequently,
@ €8p(Py? )gpy for v (0, d).

Similarly we can prove that
r’ ,
(14) 8, (p,ﬂ)b (IL_:I) < 8,(p, ")y for 7’ €(0,d).
From (b) and (14) we obtain

(408 (215 b ) (0.2 T )

< (A nSg! (.py T’)a(r’)) X (ano‘ (p’ r')b(r’)) >

Hence

(15)1 0< inf{@(‘”; Y); x € (Aﬁsp'(P’ T’)a(r'))! Yye (ano’(Py "')b(r'))}

{Q(m,y) a:e(AnS ( r )a(%)),ye(BnSo(p,%—)b(% )}

From (2) and (15) we get

1
0< TM—HIE{Q ®,Y); @ € (AN, (p,'r)a(,.)),yE(BﬁS (Pyr)b(f))l

mf{g(w y),we(AnS( ) )(M)) ye(BnSe( ,%['—)b(% )}

Hence and from (4) it results that

1 . , '
Wmfle (m1y);me(An:go'(.pir)a(r’))iyG(Bn‘ga‘(p’ b(f))] P,

Therefore (4, B) € To's(a, b, k, p). This ends the proof.

LEMMA 2. If functions a, b belong to F,, », condition (2) is fulfilled
and the space (E, o) fulfils the condition of rings at the point p € E, then
for any sets A ¢ E, B c E, (a, b)-clustered at the point p, the relation (A, B).
€ To,(a, b, k, p) implies (4, B) e To, (a,b, %, p).
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Proof. Let (A, B) € To,(a, b, k, p). Then

1
(16) ———d.lam (AnS,(p, Pae))V (BNS, (2, r)b(,.))) >0.

r—.0+

Let »’ be a number satisfying the mequahtles

mr <r' < Mr.
From (16) we have

et bl Sl
an (1)k ai (408, (o 7)) o (Bose: ) ) 7=

Let us put 6 = min(u, 4, m1), where u is 2 number such that (1)
is fulfilled for r, % € (0, u) and A is a number such that (ii) and (iii) are
satisfied. We shall prove that

r’
(18) Beg (P Vg = 8 (p, ) (=) for ' € (0, 8).
Let # € 8y(p, 7')q). 1t is easy to show that
(19) ri—a(r') < o'(p,x) <r'+a(r) for v €(0,4).
Let

(20)  inf{a(tr) —ta(r);(t, r) € (3, n) x(0, 1)}
> inf {ta(r) — a(ir); (1, r) € {8, 7> X (0, A)}.
From (2) and (19) we obtain

r 1 a(r'y < o(p,= r + L a(r
T o(p,d) < pos oo (r').
Hence and from (20) we have
?" ' r’,f TI
21 — —al|l— v I ' .
(21) i a(M);g(p,a:)< - +a(m) for ' €(0, )

From (21) and condition (iii) we get

r a(r' < ol m)<r +a(r’ for 7' € (0, 4)
m m elp, m m) P

Hence and from the fact that the space (Z, o) satisfies the condition

of rings at p € B, it follows that # € 8,(p, 7' /m)a/jm), Which yields inclusion
(18).
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Let us now suppose that
(22)  in {a(tr) —ta(r); (t, ) € {a, 7> X(0, )}
< inf{ta(r) —a(tr); (¢, r) € (5, n) x(0, 4)}.
From condition (iii) it results that
M

M
—r'—a(—r') <t —a(r’) for ' €(0,2).
m m

Hence and (19) we have

M M m m
2 . I_ . 4 ’ - ’ —_— ? .
(23) mr a(mr)<g(p,a:)<mr+a(mr)
From (22) and (23) we get

rl T' 1,! T’
M— — M _ ’ _ o ’ .
= a(m)<g(p,m)<mm +ma,(m) for ' € (0, mi)

Hence and from (2) we obtain
(24) il a(r, < o(p,2) < T +a(r,) for #' € (0, min(4, mi))
m m e\p, m m ’ y MA)).

From (24) and from the fact that the space (¥, g) satisfies the condition
of rings we obtain inclusion (18).
Similarly we prove that

’ 7’
(25) SQ'(pi r )b(r') < So (pi ;)b(% .

From (18) and (25) we get .
(26)  0< diam,((AN8y(D,y o)V (BOS (R, )uirr))

< diom, ({408, (p, 7)., o Jo(Bosp, ), )

Hence and from (2) it follows that

1 . , ,
(27) 0 < - diam, (408, (B )ar))V(BOS (D) ¥ Noir))

< o, (40,5, 2) o ) o0, (5. 2), 2 )

From (17) and (27) we obtain

— - diamy (AN 8y (P, 7)ae) U (BNSy (P, 7' )ogpy) ) 555> 0-

f-b0+

(r )
Therefore (4, B) € To;(a, b, k, p). This ends the proof.
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From Lemms 1 and Lemma 2 results the following

THEOREM 1. If functions a, b belong to F,, 5, condition (2) i8 satisfied
and the spaces (E, o) and (E, o') satisfy the condition of rings at the point
p ek, then for any sets A c E,B < E, (a,b)-clustered at the point p,
(A, B) € To;(a, b, k, p) if and only if (A, B) € To;(a, b, k, p) for i =6, 7.

It follows from the above considerations that if m = M in inequality
(2), i.e., if
(2%) o' (z,y) = Mo(x,y) for z,yek,
then we have the following

THEOREM 2. If functions a, b belong to F3; and condition (2') is satis-
fied, then for any sets A —« B, B < E, (a, b)-clustered at the point p € E,
(4, B) e To; (a, b, k, p) if and only if (4, B) € To;(a, b, k, p) for i =0,
1,...,7; here Iy, is the class of real non-negative increasing functions which.
satisfy conditions (i), (ii).

2. Let a, b be non-negative, real functions defined in a right-hand
side neighbourhood of the point 0, such that

(28) a(r)

>0 and b(r) —— 0.

f_,0+ r—>0+

Let us consider metric spaces (%, ¢) and (E, ¢’). Assume that the metrics
e and o’ satisfy the condition

(29) o' (z,y) =f(9(m7y)) for #,y € K,
where f is an increasing real function such that
(30) J(r) . 0.

LeMMA 3. If condition (29) is fulfilled and the function f satisfies con-
dition (30) and conditions

(31) a(f(r)) <fla(r) and b(f(r)) <flb(r)) for r>0,
(32) J(ryre) < f(r) f(ry)  for v, 7. >0,

then for any sets A c E, B c E, (a,b)-clustered at the point p € E, the
relation (A, B)eTo,(a, b, k, p) implies (A, B) € To;(a, b, k, p).
Proof. Let (4, B) e To,(a, b, k, p). Then

1.,
(33) P dla’me((‘AnSe(Pv ) Y (BN, (2, ")b(r))) 0.

r—>0+
Now we shall prove that

(34) Sq’ (p’ r’)a(r’) < SQ(P, r)a(r)a

where r’ = f(r). (This inclusion follows from condition (29).) Let z e
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Sy (py 7')apy. Hence and from the definition of the set S, (p,r'),,, it
results that v e | J K,(g,a(r)).

geS,/(p,1’)
Therefore there exists g € E such that
{(35) e'(¢, @) <a(r') and o(p,q) =7

From (29) and (35) it follows that
fle(g; ») < a(f(r)) and flo(p,q) = flr).

Hence and from condition (31) we obtain

(36) fle(g, @) < f(a(r)) and fle(p, q) = f(r)-
From (36) and the definition of function f we have

(37) e(g,») <a(r) and o(p,q) =r.

Hence and from the definition of the set §,(p, )y, it results that o e
8,(p) 7)a)- Therefore inclusion (34) is fulfilled.
Similarly one can prove that

(38) So’(p? ‘r,)b(r’) < Se (.p’ r)b(r)'
From (34) and (38) it results that
(39) (A8, (Py 1")ar) Y (BNS, (P 7" Vo)

c (A- nSg (p’ 7')a(r)) v (ane(p 7T)b(r)) .
Hence

(40)  diam, ({408 (P, 7)oy U (BOS (2, 7)) )

< diama( (A8, (Py o)) V(BOS(Py 7)ir)) ) :
Therefore

(41)  f(sup{e(®,9); @,y € ((AN 8 (B #)ar) U (BASL (R, )uirr) )
< f(sup{e(@, 9); 2, 9 € ({408, (P, 7)u) U (BN Sy (B, P)eir) ) -

Hence

( )k SuP{f(Q(w, Y)); 2,9 € ((A N8y (D5 7)aey) Y (BOSy (2, T')b(f')))}

< W’f( SuP{Q(-T; ?/); T,Y € ((Ansp(p, r)a(r))U(BnSe(p7 r)b(r)))])'
Therefore

(42) stp {0’ (@, ¥); @, Y € ((ANSy (B 7))V (BOS (D, 7)) ))

()"

1
< (f(r))kf( sup{e(@, ¥); @, ¥ € (408, (P 7)a) U (BOS (D, )yir) ) })
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From conditions (32) and (42) we obtain

1
43) sup{e’ (@, ¥); @, ¥ € ((A 08, (D, 7' )agr) Y (BOS (D5 ' Nogr) )}

1
(F(r)*

<

f(sup{e(@, 9); 2, ¥ € ((4N08,(B;s Tar) U (BOS (2, )or))})

1
gf(',j{ sup{g(m, y);@,y € ((A N8, (p, r)a(f))U(BmSO(p’ T)b(')))})'

From (30), (33) and (43) we have

1 ’ 14
F SUP{Q'(% Y);z,y € ((Ansq'(P: )oY (BNSy (p, 7 )b(r')))}';a—_.ﬁ* 0.
Therefore (4, B) € To;(a, b, k, p). q.e.d.

Similarly one can prove that

LeMMA 4. If (29) is fulfilled and the function f satisfies condition (30)
and the conditions

(44) a(f(r)) =fla(r)) and b(f(r) =f(b(r)) for r>0,

(45) Jryra) = f(ry) f(rs)  for v, 7. >0,
then for any sets A c E,B c E, (a, b)-clustered at the point p € E, the
relation (A, B) e Toy(a, b, k, p) implies (4, B) e To,(a, b, k, p).

From Lemma 3 and Lemma 4 we obtain

THEOREM 3. If function [ satisfies conditions (29) and (30) and

(46) a(f(r) =fla(r)) and b(f(r)) =f(b(r)) for r>0.
(47) Jrire) = f(r)-f(ry)  for ry,7,> 0,

then for any sets A < E, B — E, (a, b)-clustered at the point p € B, (A, B)
€ To,(a, b, k, p) if and only if (4, B) € Toy(a, b, k, p).

Remark. Similarly one can prove that if the function f satisfies
conditions (29), (30), (46) and (47), then for any sets A <« £, B < E, (a, b)-
clustered at the point pe ¥, (4, B)eTg,(a,b,k,p) if and only if
(A, B)eToia,b, k,p), for 4 =0,1,...,6.
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