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Special solutions of a funetional equation

by 8. Czerwix (Katowice)

Abstract. In this paper we consider the problem of the existence and unique-
ness of solutions of the functional equation (1), where @ is an unknown function belong-
ing to a certain funection class @, fulfilling condition (5).

We shall prove that its solution is continuous with respect to the parameter «.

1. In the present paper we consider the problem of the existence
and uniqueness of solutions of the functional equation

(1) p(z) = h(-”"v e[fi@)]y ..y [fu(@)], '"')7
where ¢ is an unknown function of a real variable belonging to a certain
funection class &, which is defined Delow.

It is known that in general the solution of equation (1) depends on
an arbitrary function, therefore conditions ensuring the uniqueness of
a solution are of particular importance in the theory of functional equa-
tions in a single variable (ef. [2], p. 44-45, and [3]).

We assume the hypotheses:

Hyporumsis 1.

(i) Let (X, |...]) be & Banach space. The function h(®, y1y ..., Yy, %),
h: IXY*xR-+¥Y,I =<0, o0),R = (— o0, o0) s continuousin I x ¥" x R.

(ii) There ewmist const'ants Ly, ooy L, such that for every mel, ueR,
(Ysy ovey Yn)y (B1y -vvy 2y) e X" we have

i

n
2) Wy ay voey Yy W) — (@, 21y ooy 2y I < D) Lyllys— 2,
i=1
n
i=1

(iii) The real functions f;: I—-1I, i =1,...,n are continuous in I.
(iv) There ewist the locally bounded function IL: I—-1 and constant
0 < ¢< 1 such that the inequalities

(4) 2, Liexp(LIfi(@)]) < gexp(L(w)), ol
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7101fl-(‘r) For every fized weR there exist K > 0 and (14, ..., 7,) e X" such that
My 70y ooy 1y )] < Kexp(L(w)), . wel.
HyporHESIS 2. There exist the constant ‘A and function A: I I
sueh that for every wel, iy, UgeRy (Yyyorvy Yu)e X
Wy Yry oeey Yny Ua)—D{By Yy ovvy Yps W)l < A (2) |8y — U] -

and
sup |4 (z) exp(— L(2))] < M.
el

Remark. Condition (4) is fulfilled if

1° file) < ®,i =1,...,n, Lisincreasing in I and ¢ < 1,
or '

2° L(2) = sQ(a), Q[file)]—Q(x) < s7'lus, wel, i =1,..., 7, 0<s<
< (ne)™', g = nse.

2. Let G be a space of those functions ¢: I—-Y which are con-
tinuous in I and fulfil the condition

(5) lp(@) = Olexp(L(®))], wel.
We define the norm (cf. also [1])

(6) lpl = sulpl lp ()]l exp ( — L (@))]-

We shall verify that G with norm (6) is a Banach spa.ée. Let 6 > 0
be arbitrary, and let {g;} De a sequence of elements belonging to G. Let
there exist a positive integer N such that for &, m > N,

(7) _ o — om) < &.
We have for 2¢<0,d)>,d > 0,
Ipe (@) ~ P (@)l < _suD |exD(Z (@)l g () — . (#)llexD( — L())]
ey,

gfl‘p}:—‘pm]<fsi k,m}N,
where

K = sup [exp(L(x))],

xe¢{0,d)

and consequently {g,} converges uniformly in <0, d> to a function g¢.
The arbitrariness of d shows that ¢ is continuous in I. Also p(z)e Y for
vel. Letting k—co in (7) we see that |p—g,,| < e and next, from the
inequality .

lpl = [pm] < lp— @l < &
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we have
|<77[ < “Pml +e< oo.

Therefore peG and G is & Banach space.
Now we shall prove:

ToEOoREM 1. Let Hypothesis 1 be fulfilled. Then for every weR there
ewists ewactly one solution ¢ @ of equation (1), given as the limit of successive
approvimations.

Proof. Let uweR be fixed. For G we define the transform @ = (p)
by

[

(8) O(x) = h(m,tp[fl(w)], --~"I3[fn(m)]:7")-

Now we shall prove that (8) maps @ into itself. Evidently by (i)
and (iii) @ is continuous in I and @ (v)eY for wel. We verify that (5)
is fulfilled. By (ii) and (v) we obtain

1@ (@)
< ”h(my e[fr(@)]y - p[fu(@)], 1) —h(@, 74, .00y 7, '“')” (@B, 1y ey gy )l

n .
< D) Lilp Lfi(a)] —rill 4+ (@ 73, oy 1y W1,

i=1

Next, from (iv) we have
1D (@)| < max (jg =11l - ovy lp—230) D Liexp(LLfi(@)]) + W (2,71, <.y 1y )]

i=1
< qmax(lp—ryl, ...y lg—1,1) exp(L(0)) + 1@, 11 - .., 1y W)}
< [gmax(lp =7, ..., lp—7,]) + Klexp(L(w)).

Consequently we see that if ¢e@, then also ®eG. Now we verify
that transformn (8) is a contraction map. Actually for @ = l(g) and
¥ = h(yp) we have

1P (z) — P (@)] < ”h(‘”, elfri(@)], ..., p[fu(®)], 'u) —
- h(m, pIfi(@)]1, - o wlful@)], '”’)”

< gz;i llp Lfi@)]— p [fi(@) ]I <l _ngLiexp (LIf.(@)])

< glp—vlexp (L(w)) .

Finally we have
(9) 10 —YI< qle—yl.

From Banach’s fixed point principle for contraction maps, for every
fixed neR there exists a unique fixed point of transform (8), i.e., unique
solution ¢e@ of equation (1), and it is given as the limit of successive
approximations. This completes the proof.
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" 'We also have:

THEOREM 2. If Hypotheses 1 and 2 are fulfilled, then the solution p(z, )
of equation (1) belonging to G is continuous with respect to the variables
(2, u) in I X R.

Proof. For geG we define the transform T, (p) = h(p) by

Tu(@)2) = k(o p[fi(@)], ..., o [ful@)]y 1) -
IFrom (9) we have
(10) 1Ty (@) — T ()l < gl — .
Next, by Hypothesis 2, we obtain relation
(11) 1) — Loy ()] < 5UP [4 () |4 — gl exp ( — L(®))] < I |1 — ).

From Theorem 1 there exists the unique function ¢(x, ) such that
T.[p(@, w)] = p(@,u) and T, [ple, 4)] =¢(@,u) for wel.
Then, by (10) we can write
lo (@, 'lL).—gv(m, 14p)]
< | Tulo(e, w)]— T, e (@, we) 1l +11 [p(@y %) —Tuo[(P(my Ug) 1|
< qlg(w, u)—g(@, )+ 1T, Lo (2, )] — T [p(2, %)
According to (11) we have finally
Iq7(w’ ‘lla)—f,'ﬂ(.’l?, '"0)] < (1'— Q)_IITN[‘P(‘L" ‘"‘0)]}" Tlf.o[‘P(m) ’llo)]l
< ML—g) 7 u— 1,

whence it follows that the funetion ¢(z, u) is continuous with respect
to the variable % in R uniformnly with respect to the variable » for zel,
and consequently @(z, ) is also continuous with respect to the pair
of variables (@, «) in I x R, which was to be proved.
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