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Abstract. Let f be a transcondental meromorphie function and % a positive
integer. If there exist complex numbers a, b, b # 0 such that a is an evB (ezoeptional
value in the sense of Borel) for f for distinct zeros of order < p and b is an evB for f(
for distinet zeros of order < ¢ and if oo is an evB for f for distinet zeros of order < 1,
where p, q, | are positive integers, then it is gshown that

g+1+% E+1 1
+ > 1.
(g+1(0+1) »p+1  gq+1

' Séveml consequences are deduced which extend and improve earlier results
of Hiong and Singh and Gopalakrighna. It is shown, for instance, that if & (# o)
and oo are evB for f for distinct zeros then f(¥) has no finite evB for simple zeros except
possibly 0.

" 'We denotie by C the set of all finite complex numbers and by C the
extended complex plane consisting of all (finite) complex numbers and oo.
By ‘a meromorphic function we shall always mean a transcendental mero-
morphic function in the plane. We use the usual notations of the Nevan-
linna theory of meromorphic functions a8 explained in [1] and [4].

If f is a meromorphic function we denote by S(r,f) any quantity
satisfying

- 8(z, [ (logT(z,f)
» [EET
o Ty
a8 7 — oo, whenever 1> 0 and
(2) 8(r,f) = o{T(r, )

as r — oo, through all values if f is of finite order and outside a set of
finite linear measure if f is of infinite order.
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If f is a meromorphie funetion, then we have the following fundamental
results of Nevanlinna [3], p. 63,

m(r, f'If) = 8(r, )

and.
q
(g—2)T(r,f) <D N (r,as,f)—Na(r)+8(r, f)
i=1

whenover a, ..., a, are digtinet elements of C, where

Ny(r) = 2N (r, /)= N(r, f)+N(r, L[f").

Generalizations and extensions of these results have been obtained
by Milloux, Hayman, and others and most of them are found in [1].
In [1], Hayman denotes by 8(r,f) any quantity satisfying (2) above.
However, since all the results are obtained from the fundamental results
of Nevanlinna it is easy to see that the theorems in [1] are valid with
8(r,f) satisfying (1) afRd (2) also.

In particular, we have [1], Theorem 3.1, for a meromorphic function f,

(3) m('),i;:)) = 8(r,f)

for k> 1.

If f is a meromorphic function of order 0,0 o< o, e and &
is a positive integer, we denote by 7 (r, ¢, f) the number of distinct
zeros of order < k of f —a in |2| < r (each zero is counted only once irre-
spective of its multiplicity) and by n,(r, a,f) we denote the number of
zeros of f—a in || < 7, where a zero of order < & is counted according
to its multiplicity and a zero of order > & is counted exactly k times.
Ny(r,a,f) and N,(r, a, f) are defined in terms of %, (», a, f) and n,(r, a, f)
respectively in the usual way. We further define

logT¥m, (rya,f) - '10g+lvk(”7a7f)

oe(a, f) = hl:iillp logr - - .'h,-IE:up logr '
_ ) log*7(r, a, f) . log* N(r, a, f)
) == 1 - =S 1
¢(a, f) = limsup ~=— - tmsup logr ’
and
, logtn(r,a,f) . log* N(r, a, f)
= 111 = -
e(a, 1) E,S(,Ep logr hlflilp logr
We ocall a

(i) an evB (exceptional value in the sense of Borel) for f for distinct
~zeros of order <k if g, (a,f) < o,

(ii) an evB for f for distinet zeros if g(a,f) < o
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and . S LT
(iii) an evB for f (for the whole aggregate of zergs) if ¢(a, f) < o.
Thus we call a an evB for f for simple zeros.if g, (a, f) < ¢ and an evB

for f for distinct simple and double zeros if §,(a, f) < p.
Also we call o

(i) an evP (exceptional value in the sense of Picard) for f for zeros of
order < k if m(r, a,f) = O(1), that is, if f—a has only a finite number
of zeros of order <k in 0
and

(ii) an evP for f if #(r, a, f) = O(1), that is, if f—a has only a finite
number of zeros in C. ' '

Clearly,

: 1 - i
w(rya, f) << Pl {Tny(ry @, fy+n(ry a, f)}

go that
(4) Fir,0,) S 7o BNulr; 0,0)+ (7, 0, ).

In this paper wo denve‘ celta,m conclusions involving Borel excep-
tional values of f and those of f®. Our conclusions are valid for meromor-
phic functions of all orders (finite or infinite) and improve and extend
certain results obtained by K. L. Hoing and He Yu-Zan [2] for mero-
morphie functions of finfte order. Our techniques are different from those
used in Lz] and appear to be more elementary.

We first prove

LemMA 1. If f is & meromorphw function, a,be 0, b # 0 and T as
a positive integer, then

(b) T(r,f)< N(rif)_l_Nk-i-l(T’ “,f)‘|‘1v("a b, fEY+8(r,f).
Proof. We have

=
1

Al

cxbtrop et )
= N(r,f—] )+'T (7‘,%)—1\7(9',}—:([,‘—)) +8(r, 1),

by (3)
since T(o,fi ) T(r,f)+0(1). This yields

(6) T(?',f)<~N(7‘,?%)+T(":fm)— ( f(k))'l’s(" f).
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Applymg Nevanlinna’s second fundamental theorem to f®, we
obtain !

’ 3 1 ' 1
(1) T(r, %) < N(T,f(k’) +N(T’W)+N(r’f(—"’:b_)—
— {ZN(T', O —N(r, fE) L N (r, F,i_—l))} + 8 (r, )

= N(a-;f)+N(’,f(k))+N(” f""l—b)_

— ¥ (1, ) + 800,19,
since N (r, f&+0) N (r, /&) = N (r, f¥) = F(r, 7).
Now
B T, /%) = m(r, f¥) 4+ ¥ (r, 1)
(k)
< mr,f)+m ( fT) ) SRR, )
= T(r, )+ R (1, 1) 8, £) < (6+1)T(r, )+ 8, £).
Hence .
©) 80, ¥ = 80, ).

A zero of f—a of order j > is a zeto of f*+ of order j—(k+1)
and a zero of f® —b of order m is a zero of f*+V of order m — 1. Moreover,
zeros of f—a of order > % are zeros of f® and so are not zeros of ™ —
gince b # 0.

Hence

1 1 1
(10) N( ' )+N(r,ﬂ,¢,—,_b)——N(r,W)

1 —{ 1
< Npp (r’f )+N('ryf(k)__b.)-
Substituting from (7) and (9) in (6) and using (10), we obtain ().
THEOREM 1. Let f be a meromorphic function and & be a positive in-
teger. Suppose that oo is an evB for f for distinct zeros of order <1, where 1

48 am inieger = 1. If there exist a,b € Oy b = 0 such that a is an ¢vB for f
for distinct zeros of order < p and b is an evB for f® for distinet zeros of

order < g, where p, q are positive integers, then

qg+1+% k+1 1

) @+00+1) 4L TgFL
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Proof. We have

(12) Nk+1(r,fl ) (b+1) ( - )

A L e (e
< k+1{ N, (r,f a)—l—T(r,f)}—{-O(l).
Also, by (4),
(13) 1'\7(9', f(")l—b)< q-ll—l{ IV( f(k)l_b)+1’(r,f(k))}+0(l)
and
(14) N(r, f) < {lNz(T f)+T(r,f)}.

Using (12) and (13), we obtam, from (5),

2, )< Nl )+ L 7, r, 1) 4 Nq(nfuTl__,)Jr

+1 "f—a q+1
2 1, 1)+ 20, 1) 800, 1)
p+1 q+1
k pk+1) 1
<(1+q+ ) R+ 200 Np(r,—-—f__a)+
{ = 1 E+1 1
+E:]_.Nq(lr’ f(k)_b)‘f'(p_l_l -+ q_l_l)T(T,f)—I—'S(T,f), by (8).
Hence, by (14),
(s {1._ q+l+% k+1 1 }.’[’(’r f)
@+1)0+1) p+1  g+1 ’
k 1 pe+1) - 1
<(1+—g+1)z+1 N, )+ ——F7 pon] N,,(r,f_a)+
7 = 1 .
+'q—_|-_1Nq(T,"fm) +S(?,f).

Let the order of f be p, 0 < o < co. Then the order of f* is algo o
and so, by the hypothesis, we can choose a positive number u < o such
that

_ _ 1
Ny(r, f) = 0 ("), 'Np("‘r

f—a

) = 0™
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E[“hen, choosing A such that y < A < g, we obtain
N F N, 0
f’ la(;ﬁ-,zf) o< o, f_. 2(@, @y f)

70, 7o
and

If (11) does not hold it then follows from (15) that
[red) e o

it
o

f—ml—j,# g(f—?—(%;ﬂ m) by (1).

But this implies that ¢ = the order of f< 1 which is a contradiction.
This completes the proof of Theorem 1.

since

Some consequences of Theorem 1. Let f be a meromorphic function
and % a positive integer.

. . e e . k+1 1
i) Letting ! tend to infinity in (11) we obtain >1.
(®) ing y in (11) o1 T3 >1
. k+1 1
If, now, p =2 (k+1), it follows that + > 1 ‘which

cannot hold for ¢ > 1. 2(k+1)+1 - g+1

Thus, if oo is an evB for f for distinct zeros and if there exists a € ¢
such that o is an evB for f for distinet zeros of order < 2(% 1), then f*
hag no evB for simple zeros in € except possibly 0.

In particular, if oo and a e ¢ are ¢vB for f for distinct zeros, then f®
has no evB for simple zeros in € except possibly 0.

A glightly wealker result was obtained by Singh and Gopalakrishna [4],
Theorem 6, for functions of finite order.

(ii) Letting both I and ¢ tend fo infinity in (11) we obtain i

p+17
which cannot hold for p > k.
Thus, it follows that if oo is an evB for f for distinct zeros and if
there exists b € C, b # 0 such that b is an evB for f™ for distinet zeros,
then f has no evB for distinet zeros of order < k+1 in C.

kE+1
LRt

(iii) Letting ¢ tend to infinity in (11), we obtain >
' P+1 " p+1

which cannot hold for 1 > 1if p = 2(k+1).
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Hence it follows that if there exist a,b € 0, b # 0, such that a is an
evB for f for distinet zeros of order < 2(k-1) and b is an evB for f®
for distinet zeros, then oo is mot an evB for f for simple zeros.

Since oo is always an evB for f' for simple zeros (because f/ cannot
have simple poles), it follows that if there exists a € ¢ such that a is an
evB for f’ for distinct zeros of order < 2(k+-1), then f*+) hagno evRB for
dlstmct zeros in C except possibly 0

g+1+7% 1
(g+1)(T+1)

E+1
> 1 which yields 1< —-2—;— Thus, if there exist a, b € C, b # 0 such thfmt

(iv) Letting p tend to infinity in (11), we obtain

o is an evB for f for distinet zeros and b is an evB for f® for distinct
zeros of order < ¢, then oo is not an evB for f for distinct zeros of order
E+1
< [—-:—] +1, where, as usual, [#] denotes the greatest integer <& for
any real number
In particular, with % = 1, it follows that if there exist a, b €C, b # 0
such that @ is an evB for f for distinet zeros and b is an evB for f* for dis-
tinct zeros of order < 3, then oo is not an evB for f for simple zeros.

Remark. If f i3 a transcendental meromorphic function, then logr
= o(T'(r,f)) a8'r — co and hence it follows, from (2) and (15), that The-
orem 1 and its consequences remain valid if ‘evB’ is replaced everywhere
by ‘evP’. This yields stronger results than the above for functions of
order 0. It follows, for instance, that if f has only a finite number of poles,
then either f assumes all finite values infinitely often or f®—p has an
infinity of simple zeros for all b € 0 with b # 0.
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