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A classification of dynamical systems

by JANINA KiaPYTA (Krakow)

Abstract. The present paper deals with some properties of dynamical systems (X, G, n)
satisfying conditions called in the paper assumption (A). We discuss how many—in the sense of
Baire category—Lagrange stable (Lagrange unstable, Poisson unstable, completely unstable,
dispersive or parallelizable) systems can be defined on a given topological space. We also study
dynamical systems in R" with regard to stability of sets.

Among the important properties of dynamical systems are parallelizabili-
ty, dispersivity, complete unstability, Poisson unstability and Lagrange unsta-
bility. Our paper tries to answer the following question: how many (in the sense
of Baire category) systems with one of these properties can be defined on
a given topological space.

A classification of dynamical systems with regard to stability of sets is also
given.

In the second and third parts of this paper the above problems are
discussed in the spaces R".

Most of the definitions adopted here are taken from [1] and [4]. We
consider dynamical systems (X, G, n) satisfying the following assumption:

(A) X is a non-empty first countable Hausdorff topological space, (G, +, <)is
a topological, ordered, abelian group with neutral element 0 and with
topology induced by the order relation which does not admit first and last
elements.

I. Dynamical systems in compact spaces. Let X be a topological space and
let G satisfy assumption (A). Let us recall the well-known definitions (see for
instance [1], [4]).

DEerFINITION 1.1. A triple (X, G, 7) is said to be a dynamical system iff m is
a mapping from Gx X into X such that for all ¢, seG, xeX

(L.1) n(0, x) = x,
(1.2) n(t, n(s, X)) = n(t+s, x),
(1.3) 7 is continuous.
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DEerFINITION 1.2. The sets
n(x):=nt(xX)un”(x),
nt (x):= {n(t, x); teG, 0<t},
n”(x):= {n(t, x): teG, t <0}

are called the trajectory, the positive semi-trajectory and the negative semi-
trajectory of x respectively.

DEerFINITION 1.3. The sets
Ap(x):= A7 (x)u AL (%),

AF )= {n* (=(, x)): teG},
Ay (x):=N{="(x(t, x)): teG}

are called the limit set, the positive limit set and the negative limit set of
x respectively.

In a similar way some other notions are introduced. For example:

DerINITION 1.4. The sets
D} (x):= (V{=*(V): V in a basis of neighbourhoods of x},
J¥(x):= {Dx (n(t, x)): te G}

are called the first positive prolongation and the positive prolongational limit set
of x respectively.

We define the first negative prolongation and the negative prolongational
limit set of x similarly.

Remark 1.1. D} (x) = n*(x)uJ] (x) for every xeX.
For dynamical systems satisfying assumption (A) we have
THEOREM 1.1 (see [4]). Let xe X. Then
(14) A;7(x)={yeX: 3,eG, t,— o0 such that n(t,, x)—y},
(1.5) DY(x)={yeX: 3,eG, 0<¢t,, Ix,eX, x,—>x
such that =(t,, x,)—y},
(1.6) Ji(x)={yeX: J,eC, t,~ o0, Ix,eX, x,—>x
such that n(t,, x,)— y},
where t,— co if for every se G there is noe N such that s <t, for every n > n,.
DEFINITION 1.5. A set M < X is called invariant if

n(t,x)eM for all xeM and teG.
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DEFINITION 1.6. A non-empty set M = X is called minimal if it is closed,
invariant, and ‘no proper subset of M has these properties, i.e. M = M,
M =n(M):= | J{n(x): xe M} and

@#Cc=M,C=C, n(C)=C) = C=M.
THEOREM 1.2 [4] (see also [1] for another form).

(1) A non-empty set M < X is minimal if and only \zf n(x) = M for every
xeM.

(i) Every non-empty compact invariant set contains a minimal set.

(i) If M # D is compact, then

M is minimal < (A, (x) =M for every xeM).
DEFINITION 1.7. A dynamical system (X, G, =) is called

(i) parallelizable if there exists a non-empty set S = X and a homeomor-
phism h: X — G x S such that

i1) Y {n(, S): teG} = X,
(i.2) h(xn(t, x)) = (t, x) for all teG, x€S,

where =n(t, S):= {n(t, x): xeS},

(i) dispersive if for all x, ye X there exist neighbourhoods U, of x and U,
of y such that there exists TeG, with U, nn(t, U)=90 for each
teG\[—T, T], where G,:= {teG: 0<t},

(iii) completely unstable if every x € X is wandering, i.e. x ¢ J; (x) for every
xeX,

(iv) Poisson unstable if each xeX is Poisson unstable, ie. x¢ A (x) for
every xeX,

(v) Lagrange unstable if n—(;) is not compact for every xeX.

Unless otherwise stated, we assume throughout the paper that the pair
(X, G) satisfies assumption (A).

THEOREM 1.3 (see [1], [4]).

(i) A dynamical system (X, G, n) is dispersive if and only if J; (x) = O for
each xeX.
(i) Every parallelizable dynamical system (X, R, m) is dispersive.
(iti) Let X be a metric separable locally compact space. Then every
dispersive dynamical system (X, R, ) is parallelizable.

CorOLLARY 1.1. If X is a metric separable locally compact space (e.g.
X = R"), then a dynamical system (X, R, w) is parallelizable if and only if it is
dispersive.

We will study the families of all maps = for which the corresponding

dynamical systems are respectively parallelizable, dispersive, completely un-
stable, Poisson unstable or Lagrange unstable.
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Let %(Y, X) denote the family of all continuous maps from Y to X. For
any fixed X, G satisfying assumption (A) we set
(17) €:={ne¥(GxX, X): (X, G, n) is a dynamical system satisfying (A)},
(1.8) 2:={re¥: (X, G, mn) is dispersive},
(1.9) o :={ne¥: (X, G, n) is completely unstable},
(1.10) #:= {re¥: (X, G, n) is Poisson unstable},
(1.11) Z:={ne¥: (X, G, ) is Lagrange unstable}.
THEOREM 14. D A c P c 2.

The proof follows easily from the deﬁnitioﬂps. We only prove the last
inclusion. Suppose that #¢ £, ie. there is ne#\.Z. So there is xe X such

that n(x) is compact. In view of Theorem 1.2 there is a compact minimal set

M contained in m(x) such that yeA_(y) = M for each yeM. Thus n¢ P,
a contradiction which completes the proof.

THEOREM 1.5. Let X be a compact space. Then @=H =P = P =0.

In order to prove the last equality, take ne¥. Since X is a non-empty
compact invariant set, by Theorem 1.2 there is a compact minimal set M < X,

so n(x) = M for each x e M. Thus the dynamical system (X, G, =) is Lagrange
unstable for no ne¥, ie. £ =0, and Theorem 1.4 gives the assertion.

COROLLARY 1.2. Let X be a compact space. No dynamical system (X, R, =)
with ne® is parallelizable.

Remark 1.2. The local compactness of X is not sufficient for the above
assertion to hold.

ExampLE 1.1. Let (R? R, m) be the dynamical system given by the
differential equations

dx,jdt =1, dx,/dt =0.
For every xeR?, J (x) =@, so n€9D # @.

IL A classification of dynamical systems with regard to stability of sets. Let
(X, d) be a metric space.

DEFINITION 2.1. A non-empty set M < X is called
(1) BH-stable (Bhatia-Hajek-stable) in (X, G, =) if for all x¢ M and ye M
there are 6, n€R, such that B(x, §)nn* (B(y, 1)) = @,

(i) uniformly stable in (X, G, =) if for every & > O there is 6 > 0 such that
n*(B(M, 8)) = B(M, ¢).
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Here B(x, 8):= {ye X: d(x, y) < 8} and B(M, 8):= J{B(x, 8): xeM}.

THEOREM 2.1 (see [4]). If X is a locally compact metric space and
D##Mc X, then

(i) M is BH-stable in (X, R, n) <= D} (M) = M.

() If M is compact then

(M is uniformly stable in (X, R, 1)) < DS (M) =M.

For every non-empty set X we set
(2.1) 2%:={A =X}, UX):={Ade2X: 4= A)}.

We define the function d: 2¥x2¥ R by

. 0 for A=gs
d@, A):= {00 for Ae2X\ {9},

d(A4, B):= max(supd(x, B), supd(y, ) for A, Be2*\{Q}

xeAd yeB’

where d(x, B):= inf,zd(x, ), i.e. d is the Hausdorff metric in €/(X)\{D} (see
[2]).
Remark 2.1. (¢1(X), d,) is a metric space, where
d,(4, B):=min(l, d(4, B)) for A, Be%I(X).

In the sequel we shall consider dynamical systems in X = R".
Let € be the set introduced in (1.7) and let g: ¥ x ¥ — R be defined by

2.2

(2.3) oo, m):=sup{d(p(t, x), n(t, x)): (t, x)eGx X}.
Remark 2.2. (%, g,) is a metric space where
(2.9 ¢:(®, ®):=min(1, g(p, m)) for @, ne¥.

For X = #" the following theorems are true.

THEOREM 2.2. For all ¢, ne% and neR we have the implication
2.5 glp, M) <n = J(W¢(x), W,(x)) <7 for each xeX,
where W= A%, DY, J™ .

We prove this theorem for W= J*, for example. We shall consider two
cases.

First, suppose that there is yeJ;(x) # @. In view of (1.6) there are
sequences x, — X, t, — oo such that n(t,, x,) —»y. So there is r > 0 such that
n(t,, x, )€ B(y, r) for all k. For every ¢ €% such that g(p, m) < n we have

d((p(tk’ xk)’ y) S d((p(tk’ xk)’ n(tk’ xk))'*'d(n(tk’ xk)a y) S "+r’

Le. the sequence ¢(t,, x,)eR" is bounded. Thus there is a subsequence
o(t,,, x,,) converging to zeJ; (x) and J; (x) # .



114 Janina Ktapyta

We estimate the distance between y and z:
d(ys 2) < d(y, n(ty,, x, ) +d(mty,, x,), ol x. ) +d(oty,, X)) 2).
Hence
Ve>0: d(y,z)<e+n, ie d(y,z) <.
So, for every yeJ; (x) there is zeJ, (x) such that
d(y, J3(x)) <d(y,z) <n for every yeJz(x).
Analogously changing the roles of = and ¢ we obtain
d(z, JT(x) <d(z, y)<n for every zeJ  (x).
The above inequalities give
d(JF (), Jg (X)) <.

Now, let J.7 (x) = @. Suppose that there is ¢ € ¥ such that ¢(¢, n) < n and
J7(x) # D. From the first part of the proof we have J (x) # &, which gives
a contradiction and finishes the proof.

The proof for the case W= A* is analogous (see (1.4)). Hence in view of
Remark 1.1 we obtain our assertion for the case W = D*. The proof of the
theorem is finished.

It is known (see [1], [4]) that W, (x) e ¢!l (X) for each ne ¥ and x € X, where
W= A", D*, J*. Therefore from (2.5) we get

THEOREM 2.3. For each xe X the map
(2.6) W(x): €an— W, (x)e¥!(X)
is uniformly continuous from (€, o,) to (¥1(X), d,).

Analogous theorems hold for W= A", D™, J~ and of course for W = A,
D, J.
Let M < X. Set

2.7 W, (M):= | ) W,().

xeM

It is easy to prove the implication
d(W,(x), W,(x)) < n for every xe M = d(W (M), W,(M)) < 1,
which, for W= A", D*, J*, instantly gives
COROLLARY 2.1. For all M c X, neR, n, €% we have
28) oln, 9) <1 = A(W,(M), W,(M) <.

Applying the above results we have



A classification of dynamical systems 115

THEOREM 24. For every non-empty set Me%I(X) the set
Sy:={pe¥: D; (M) = M}
is closed in € with the topology of uniform convergence.
Proof. Let ¢,€S,, such that ¢, —»= in ¥. Then from (2.8) we obtain
Ve>0 dngeN Vk=ny: d(D} (M), D (M) <z,

hence for every e > 0, d(M, D; (M)) < &. This means that D;} (M) = M, which
gives the assertion.
Let meS,,. Then

nt(x)ca* (M) Df(M)=M for every xeM.
Remark 23. If a2 non-empty set M c X is compact, then S, c
C\L + 4.
As a simple corollary of Theorem 2.4 and 2.1 we get

THEOREM 2.5. Let G =R and a non-empty set M — R". Then

(i) if M = M such that S,; # €, then {9 e €: M is not BH-stable} is of the
second Baire category in €,

(i) if M is compact then {@ €¥: M is not uniformly stable} is of the second
Baire category in €.

Remark 2.4, It may happen that for a given set M < X and a map =, M is
uniformly stable for =, but in every neighbourhood of = there is «’ such that
M is not uniformly stable for «'.

ExampLE 2.1. Let (R", R, 7)), k=0, 1, 2, ..., be the sequence of dynamical
systems given by the differential equations

dx,/dt = f,(x,), dx,/dt =0, ..., dx,/dt =0,

where f, =0 and

icosz(kﬂxl —4in), x,€(0, 1/k),

k
filx) =< "
0, x, ¢(0, 1/k)
for k=1, 2,... We then have
'

k_ln_(%n+arc tan(t + tan(kmx, —4n), x,, ..., x,
for x,€(0, 1/k),
0 for x, ¢(0, 1/k).

nk(ta (xn --.,x,,)) = < (

-
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We notice that, as k— o, (f;, 0, ...,0) and =, are convergent to (f;, 0, ..., 0)
and 7, in the spaces #(R", R") and ¥ (R x R", R") respectively, where the spaces
are equipped with the topology of uniform convergence.

For these dynamical systems we have

)= {{(l/k, Xpy oos X}, %, €(0, 1/k),

mt(xl,n' {(xlﬁ""xn)}, x1¢(0’ l/k)’

_ B {0, x5, ...,x,)}, x,€(0, 1/k),
"“““”“”‘ﬂupimm, x, (0, 1/K),

where W = A4, J.
Let M:={(0, ..., 0)} = R For every neighbourhood of n,€S,, there is
m, ¢S, because

D} (M)={(x,,0,...,0): x,€[0, 1/k]} 2 M = D (M).

III. A classification of dynamical systems in R". Let Y be a topological
space and let (X, d) be a metric space. In a set € = ¥(Y, X) we introduce the
following equivalence relation S: if ¢, ne¥, then
(3.1) (0. meS & sup d(p(y), n(y)) < co.

yeY

We write €/S:= {C,: ne®¥} for the set of equivalence classes.
We define the function

(3.2) 0: €xE3(p, m)—=supd(p(y), n(y))eR
ye¥
and its restriction

(3.3) = 0lc, -

THEOREM 3.1. If Y is a topological space and (X, d) is a (complete) metric
space, then for every ne¥

(@) (C,, 0,) is a (complete) metric space,

(i) C, =\ J;21B(m, r), where B(n,r):={pe¥: o(p, n) <r}.

Proof. Obviously ¢,: C,xC,—R. Also it is very easy to prove that
(Cy, 0,) 1s a metric space. We now show that this space is complete if so is
(X, d).

Let {p,} = C, be a Cauchy sequence, ie.

Ve>0 AngeN Vk,m2ny: 0.(0,, 0,) <é.

By the definition of ¢, we see that {¢,(y)} = X is a Cauchy sequence for every
y€ Y. Thus the completeness of (X, d) implies that ¢, is pointwise convergent
to some ¢: Y- X. Since
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Ve>0 3n,eN Vk,m2n, VyeY: d(p,(y), ¢.0) <&,

letting m — 0o we obtain the uniform convergence of ¢, to ¢. Thus p e ¢(Y, X)
and ¢eC,, = C,, which completes the proof.

Remark 3.1 If Y is a topological space, (X, d) is a metric space,
C,c (Y, X) and g,:= glc, gives a metric in C,, then C, = C, for every
ne C,. This is obvious, because for every ne C,, if ¢ = C, then ¢(¢, n) < 0,
so peC,.

The above means that S-equivalence classes are biggest subsets (in the
sense of inclusion) for which the restriction of ¢ is a metric.

THEOREM 3.2. If Y is a topological space and (X, d) is a (complete) metric
space, then (¥(Y, X), ¢,) is a (complete) metric space (see (2.4)).

Let € « (Y, X) and {x, = ¥: x€ X} be a family of subsets of ¥ satisfying
the condition

()] (mey, = C,cy,) for every xeX.
In view of Remark 3.1 we have

LEWA 31. Let (C,,e,) be a metric space (C,<¥). Then
C,nxy#9 < C, .

LEMMA 3.2, Let nc¥. Then

(1) g ()2 < Con () 2= 9,
xeX xeX

(1) ¢ Jx. < Cnl =9
xeX xeX

COROLLARY 3.1. (Vxex Xx> UxeX X, are closed and open sets in (¥, o).
This is evident by virtue of Theorem 3.1 and Lemma 3.2.

Remark 3.2. In the quotient set ¥/S we can introduce the following
equivalence relations:

(3.9 C.(0C, <= {xeX: mey,} ={xeX: pey,},
(3.5) C.(0Cy <> m,0e ) v, 0¢ | 2,
xeX xeX

According to Lemma 3.2 these relations are well defined, ie. their
definitions are independent of the choice of representatives of the classes C,,
C¢

Now, we take the set ¥ defined by (1.7).
Example 2.1 shows that the families

P,.={pe¥: xed,(x)}, xeX,
C\A,={pe¥ xelJj(x)}, xeX,
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do mnot satisfy condition (C), because there is xeR" such that
T EP . N(E\A), m,eC,, and m¢P U(E\A,) for keN.

The properties of the families 2, and €\, presented above give the
following:

Remark 3.3. Let xeX.

(i) The set of functions = for which x is nonwandering (the trajectory of
x is Poisson stable) is not an open set.

(i) The limit of a uniformly convergent sequence of functions = for each of
which x is wandering (the trajectory of x is Poisson unstable) does not
necessarily satisfy this condition.

Now, we shall give two examples of families satisfying condition (C) with
X=PR
(3.6) o = {ne¥: n(x) compact},
(3.7) B.:={ne¥: J(x)#0}.

We take any ne &/, and ¢ eC,. So @ is compact, i.e. there is ne R, such
that n(x) = B(x, n) and there is re R, such that g(¢p, n) =r. Therefore

d(o(t, x), x) < d(p(t, x), n(t, x)+d(r(t, x), x) <r+n

for te G, i.e. @(x) is bounded. This is equivalent to the compactness of ¢(x) in
R", so the family &, satisfies (C).

The family 4 satisfies condition (C) in view of Theorem 2.2

From the above there is a family satisfying condition (C), for which
O # Uxex Xz # %, and with the use of Corollary 3.1, we get the following
theorem:

THEOREM 3.3. The space € with the uniform convergence topology is not
connected.

We now apply the results presented at the beginning of Section II to the
families o/, and .. In this way we obtain some important theorems on the
families 2, o, #, @ for X = R" (see (1.8)(1.11)).

THEOREM 3.4. Let C, < € and suppose that g, = ¢|._gives a metric in C,.
Then )

(there is meC, satisfying (x)) <> (every neC, satisfies ()
where () is one of the conditions:

(1) (X, G, n) is dispersive,

(i) (X, G, m) is Lagrange unstable,
(i) (X, G, ) is not dispersive,

(iv) (X, G, m) is not Lagrange unstable.
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COROLLARY 3.2. Subsets C,, of the class C, < 2 are the only possible metric
spaces (C,,, o,) in which we can try to find a function = for which the dynamical
system is dispersive, completely unstable or Poisson unstable.

CoroLLARY 3.3. If in a metric space (C, o) there is a function = for which
the dynamical system satisfies one of the following conditions:

(i) (X, G, n) is not Lagrange unstable,
(i) (X, G, m) is not Poisson unstable,
(iii) (X, G, m) is not completely unstable,
(iv) (X, G, n) is not dispersive,

then no dynamical system, for functions belonging to C,, is dispersive.
The proof of Theorem 3.4 follows from the equalities

(3.8) NZ=o, €\92=|)2,

xeX xeX

We can define the set

(3.9) ¥:={ne¥: (X, G, n) is Lagrange stable},
where (X, G, =) is Lagrange stable, when Fx) is compact for every xe X (see
[1], [4]).
It is easy to observe that
(3.10) g= A,

xeX

Remark 3.4. Theorem 3.4 is also true when (%) is one of the conditions:

(v) (X, G, n) is Lagrange stable,
(vi} (X, G, ) is not Lagrange stable.

Equalities (3.8), (3.10) and the lemmas on families satisfying (C) also imply:

THEOREM 3.5. The sets @, & and & are both closed and open in the space
((f: Q 1)'

Since 9 # X we have
COROLLARY 34. @ is not dense in X .

The set € is closed in (¥(G x X, X), g,), so (¥, g,) is the complete metric
space (see Theorem 3.2). In virtue of theorems of Baire category theory (see [3])
we get

THEOREM 3.6, The sets 9, X', #, P and & are of the second Baire category
in (€,0,) but they are not residual sets in this space.

Remark 3.5. The relations (y) and (%) defined in (3.4), (3.5) applied to the
families &/, and 4%, give partitions of the metric spaces C,.
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For example, if in the case y,:= &/, we have C.(0) C,, then the dynamical
systems are Lagrange unstable for all functions belonging to C,, and C,, spaces,
or are not Lagrange unstable for all those fnctions. These dynamical systems
are or are not dispersive simultaneously, when y,:= %.,.

Remark 3.6. In the quotient set ¢/S the relation
(3.11) C,~C, > nm,pelvmpefvnm ¢l

is also a well defined equivalence relation (see Lemma 3.2 and (3.8), (3.10)).
The above results can be applied to dynamical systems given by
differential equations.

THEOREM 3.7. Let (R", R, =/} and (R", R, n,) be the dynamical systems given
by systems of differential equations x' = f (x) and x' = g(x) respectively. If there
is a set K = R" bounded and invariant in (R", R, n,) such that

(3.12) {xeR" g(x) #f(x)} =K,
then m,eC, .

Proof. We consider two cases. First, let x,¢ K. From the invariance of
R™\ K it follows that n(t, x,)¢ K for every teR. Hence and from (3.12) we get

d
576 X0) =1 (1 (8, x0)) = gl (¢, x0)

for every teR. In view of the uniqueness of solutions of the Cauchy problem

x'=g(x), x(0)=x,
we have
(L, xo) = m,(t, xo) for every teR.

Now, let x,e K. K is invariant, i.e. n,(t, x,)eK for every te R. Suppose
that there is t,€R such that 7 (t,, x,)¢ K and put y,:= ,(to, Xo). From the
first part of the proof we get xo = 7 (—t,, yo) == (=10, Yo)¢ K, a contradic-
tion. This proves n,(t, x,) € K for every te R. By the boundedness of K there is
MeR, such that ||x|| < M for every xeK, so

d(m(t, xo), M, (t, x0)) < Imy(t, Xo)| + Im4(2, xo)]| < 2M

for every x,eK and teR.
In this way we have shown that o(m,, mp) < 2M, ie. m eC, "

COROLLARY 3.5. If f and g satisfy the assumptions of the above theorem, then

the dynamical systems given by f and g have the same sets of Lagrange stable
points, le.

{xeR" m,(x) compact} = {xeR" n,(x) compact},

{xeR" J,_(x) =0} = {xeR": Jp, (X) = 3}
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Obviously we can also apply other methods in order to verify whether two
dynamical systems given by differential equations belong to the same class.

Remark 3.7. If the set of partial limits of

(f(S)—g(S))ds as ¢— o0 and a— — o0

O ey R

is bounded, then =, e C,,f.
For example, if f(s)—g(s) = (sins, coss) for seR, then the dynamical
systems (R%, R, n,) and (R? R, mn) have this property.
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