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On an ODE problem for equisingularities

by Tzrr-CHAR Kvuo (Sydney, Australia)

Abstract. A type of ODE is studied. The results are applied to algebraic geo-
metry. An unsolved ODE problem is proposed.

1. Introduction. Let P(x), Q;(2), 1 <i< n, be defined and analytic in
a neighbourhood of 0 in R". Suppose P(0) = 0 and P(x) > 0 for z # 0;
we say that P(zx) is positive definite in this case. Moreover, suppose

Define @,(0)/P(0) = 0. Then 0 is an cquilibrium point of the continuous
vector field

dz; _ Q; () .
(1) Pl P(w)’ 1<t < n,

which is analytic except at 0.

An analytic are at a point a e R" is a parametric arc a: [0, &) — R,
written as x; = ¢;(8),0<s < e, 1 <i<n, with a(0) = a, where each
a; is a convergent power series in s (cf. [6], § 3, p. 25). A Newton—Puiseur
arc at a e R" is an arc A: [0, &) - R", 1(0) = a, for which there exists
a substitution of the form s = o(5) = 8%, k a positive integer, such that
Ao o is an analytic are.

For example, z = 23"”2, y =1t is a Newton—Puiseux arc at 0
n=3
in R?. Tt is not analytic.

An arc A: z; = A4,(s8), 1 <4< n, is Newton—Puiseux if and only if
each 1,(s) is a convergent fractional power series in s, i.e. a series whose
powers can be written as fractions having a same denominator ([81, p. 97).

Let ¢,(x) denote the trajectory of (1) satisfying the initial condition
po(@) = x. Let 6 > 0 be a given constant. Then for all # in a sufficiently
small neighbourhood of 0, ¢,(z) is defined at least for 0 < ¢ < 4. Hence
s * — @s(2) maps a neighbourhood of 0 into a neighbourhood of 0.

In this paper we are interested in the following

ProBLEM. Let A be a Newton—Puiseux arc at 0. Is it true that pz;0 1
18 also a Newton—Puiseux arc at 0%
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This problem does not seem to have been considered before by differ-
ential equationists.

It turns out that, in general, the answer is no. An example is construct-
ed in the following section. We then introduce in Section 3 the notion of
the distribution of Lojasiewicz exponents associated with an analytic func-
tion-germ, in terms of which a sufficient condition for ¢,0 1 to be Newton—
Puiseux is formulated ; this is contained in the Main Theorem in Section 5.

The vector field (1) and the above problem arise naturally in the
problem of equisingularities (cf. [3] and [4]). In the last section, we propose
the notion of Newton-Puiseux ftrivialization and derive from the Main
Theorem an existence theorem for such trivializations. This theorem
applies in particular to Whitney’s non-homogeneity example, an example
of Kuiper, and the double cusp in Catastrophe Theory ([10]).

2. An example. Consider the vector field in R®

do _ yaty)  dy _

2 = T e a_a . — .
(2) dt p242y0 T dt 0

Take A(y) = (0,9), 0 <y < ¢ the parameter being the variable y. Solv-
ing (2) by separable variables, we find ¢,((0,y)) = (¢(y),y), where
x = x(y) is the root of the equation

(3) 12 — xy® + 3y*log [1 + —5—2-] = dy3.
One then easily verifics that any convergent series of the form
(4) x=2aiyr", >0, 0<r, <ry<...

i=1

is not a solution of (3). Here r; can be any real numbers.

Now if g,04 was Newton—Puiseux, then there would exist two con-
vergent series £ = x(8), ¥ = y(s), 0 < s < ¢ which satisfy (3) identically.
Eliminating 8, we would then find a series of the form (4) satisfying (3),
where all #; are rationals. Thus ¢,0 4 is not Newton—-Puiseux.

3. Distribution of Lojasiewicz exponents. Recall first that for a frac-
tional power series g(t) = ¢,1'+ ..., ¢; # 0, its order is the degree of
the first non-vanishing term: O(g) =r,. If ¢g(t) = 0, then O(g) = oo.

Let f(z) be defined and analytic for 2 near 0 in R", f(0) = 0. For
a Newton—Puiseux arc at 0, 4: z; = 4;(8), 0 <8< ¢ 1 <7< n, we define

2,0 = —0(f((s)),

where m = min{0(4;(s))}, 1<i<n, A(s) = (4(8), ..., 1,(8)).
¢
Let &2, denote the set of all Newton-Puiseux arcs at 0. Then 2,
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iIs a map
Dsr Poy— QU {o0},
where @* denotes the set of all positive rational numbers. Here 2,(1) = oo

if and only if f vanishes identically along A.
We call 2, the distribution of Lojasiewicz exponents associated to f.

ExamprLE. Consider P(z,y) = x?+2y% which is the denominator
in (2). Let 4 be an are of the form

z=ay'+..., r>0,a #0.
Then
|4 it r=2,
'@P(M_{zr, £ ro<2.

ExawmpLE. Consider P(x, ¥) = x*+y* Then for all 1 e 2, D,(1) = 2.

4., The horn-topology, degree of comnstant range. We now define
a neighbourhood system {H,(A; w)} for each A e Z,, where d > 1, w > 0.
Roughly speaking, H;(4; w) consists of all 4 € 2, whose order of contact
with A is at least d.

Let R™ be suitably rotated, if necessary, so that A is tangent to the
positive z,-axis. Then A can be parametrized by x,, z, > 0, as

o = Ai@), O()>1, 1<i<n—1 (A(z,) =3,).

For ue?,, which makes an acute angle with the positive z,-axis, we
can also parametrize it by «,, 2, > 0, as

T; = (%), 1<ig<n—1 (p(x,) = =,).

Here O(u;) >1 for each i¢; and min {O(y)}>1 if and only if uis
1st<n—1
tangent to the positive z,-axis.

Define u € Hy(4; w) if and only if |4,(x,) —p;(2,)| < w2l, 1<i<n—1,
for all sufficiently small values of z,. We do not consider any x which is
perpendicular to or makes an obtuse angle with the positive z,-axis;
it is “too far” from A in our topology.

Observe that H,(i;w) <« Hy(A; w) if d>d'.

The above neighbourhood system gives rise to a topology on £,
called the horn-topology; and H,(A;w) is called a horn-neighbourhood
of A (in #,) of degree d.

Consider the distribution 2, defined in the last section. If 2,(1)
is finite, then 2, is a constant in some horn-neighbourhood of A. This
asgertion is a special case of the following stronger result.

PrOPOSITION. If D,(4) is finite, then there i8 a rational number d (1),
d;(A) = 1, which i8 the smallest number having the property that 9, is a con-
stant on de(,_,(}.; w) for sufficiently small w.

We call d,(A) the degree of constant range of 2, at .
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ExamprEs. Let i(y) = (0, %) as before. If P(z,y) = 224 2y4, then
dp(d) = 2. For P(z,y) = 2*+y?, dp(d) =1. And for P(wz,y)= 2*+y°,
dp(d) = g

For a proof of the proposition, consider a general arc u, obtained
by perturbing A at degrce d,

pr g = A(@,) +omy, 1<i<n-—1,

where d is an indeterminant, ¢; are sufficiently small numbers.
Write f(A(x,)) as

flA@,)) = a4+ ..., a, #0, 1, = Dy(4).
Then

F(u(@) = FlA@) + g ()7 4 ...],

where ¢,(¢) is a polynomial in ¢ = (¢,, ..., ¢,), :(0) = 0, and ¢, is a linear
function of d with rational coefficients. Let ¢ be restricted to a region
le| <% in which |g,(¢)| < |ay], and ¢;(¢) = 0 only when ¢ = 0. Then
Di(p) = D4(4) if and only if ¢, > 7,.

If d is sufficiently large, say d > 2,(4), then we find O(f (,u(acn)))
= 9;(A) by direct inspection. Therefore, the smallest value d, of d such
that ¢, > r, can be found by solving the linear equation ¢, = r;. Now,
put d,(1) = Max{1, d,}.

5. The Main Theorem. Let us consider a more general case. Let
a non-autonomous system

dr;  Q(z,1)
dt  P(z,t)’

(1)

be given, where P, @ are defined and analytic in («, t), for  in R" near 0,
|t| < n in R. Suppose for every fiwed value of ¢, P(x,t) = 0 only when
x = 0, and suppose

Q;(z, 1)

Li —
"M P, 1)

0 asz—>0,1<ein.

As before, let 2, denote the set of all Newton—Puiseux arcs at 0
in R™ (not those in R"*'!). Let f(x, t) be an analytic function. For 1 € #,
and each fized value of ¢, 2,(2) is defined. If 9,(1) < oo, then d (1) is also
defined. Of course, they depend on ¢.

Let ¢,(x) denote the trajectory of (1’) satisfying ¢,(z) = .

MAIN THEOREM. Let A € 2, be given. Suppose that Dp(2) and d,(2) are
independent of t. Moreover, suppose
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(9) Do, (1) = 2p(A)+dp(2), 1<i<mn,

Jor we Hgy;(4; w).

Then @404 € Hapiy(4; w), for all sufficiently small 6. Moreover, if
8 = o(3) = 5™ 18 a substitution for which A(3™) is analytic, then ¢,0Aoc s
analytic in (3, t).

Note that for the autonomous system (1), the first hypothesis is
superfluous. Note also that (5) can be rewritten as

Do, (1) = Zp(p) +dp(pn), p € Hyppy(h; w),
since
Dp(p) = Zp(1), dp(p) = dp(4).
In the example of Section 2, (5) is not satisfied; it was shown there
that g;04 ¢ 2.
3 8
ExAMPLE. For f-if = —w—, -d-gi —
dat 2+y?’ dt x? -+ y?
for any A. Hence ¢,041 € Z,.

COROLLARY. Under the same hypothesis, g;0 A is of class C* at 0, where k
denotes the largest inleger < dp(A).

This follows immediately from the fact that ¢,04 € Hg,;)(4; w).
AN UNSOLVED PROBLEM. Assume, instead of (5), that

(6) Do,(A) = Dp(A)+F  for all Ae Py,

in R? (5) is satisfied

where k is a given integer. Is it true that p,0 4 is C* at 0%

Observe that in the example of Section 2, (6) holds for ¥ = 1, and ene
can show that ¢,04 is C', where A(y) = (0, ¥).

6. Proof. We shall omit ¢ in P and @ for simplicity of notation.

Let A be parametrized by =z, as in Section 4, z; = A(z,), 0(4) > 1,
1 <4< n—1. Consider the point set #;(1; w) in R" which consists of all z
satisfying the inequality

n—1
Z |, — A (@) < way.
i=1

This is a horn-shaped open set with vertex 0, but 0 ¢ Z;. We call Z;(1; w)
the horn-region of degree d around A. Let ue?, be parametrized as
@ = w(z,), 1 <i<<n—1. Then u(z,) € Z,(4; w) for all sufficiently small x,,
if and only if ue H;(; w).

Write each 4; as
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where r; = n;/m, m,n; are integers, 0 <m < n, <n,<... Then
consider the change of coordinate system # = @ () defined for z, > 0 by

oo
_ Ti] .
U; —w,-—ZG,-,-a:n y, 1<i<n-—-1,
j=1

Uy = T

Notice that & maps the open half space 2, > 0 bianalytically onto the
open half space u, > 0, and is a homeomorphism of z, > 0 onto #, > 0.
It may not be analytic along z, = 0.

Now & induces a map 9" defined by u* = &*(z) = Pou. In partic-
ular, A* = #*(1) is the non-negative u,-axis, and H,(4;w) is mapped
bijectively to H;(A*; w) under &*. Moreover, ® maps %;(A; w) bianalytic-
ally onto #,(A*; w) in the u-space.

From now on, we shall write d;(1) simply as d.

Consider a second change of coordinate system, v = ¥(u), defined
for u, > 0 by

v =u%u;, 1<ig<n—1,

v, = U,.
When d = 1, this is the well-known ‘“blowing-up” process in Algebraic
Geomerty. Observe that ¥ is bianalytie.

Define ¥, for all v, by
w = 00%,  1<ig<n—-1,

U, = ,.
The restriction of ¥~! to v, > 0 is the inverse of ¥. The whole coordinate
hyperplane v, = 0 is mapped into the origin 0 in the u-space under ¥~';
a half line

v =¢, 1<i<n—-1,v,>0,
where ¢; are constants, that is parallel to the non-negative wv,-axis, is
mapped to the arc
w = o, 1w, >0,
We have to assume %, > 0 in our consideration. As d is not necessarily
an integer, u¢ may not make sense in case u, < 0.

n—1
Now consider the half-open cylinder € = {v| > v} <w’, v, > 0}.
i=1

Under ¥, #,(2"; w) is mapped bianalytically onto C.
Let us now consider the restfriction of (1') to #;(4; w). Its image
under d® is the vector field

duf_Q:(’“) i<n
dt ~ P*(u)’ S

(7)
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in #,(A*; w), where
= Q:(®7( )—Zc w7 Q, (P71 (),
Qn(u) = Q, (97" (w)), P*(u) =P (P (u)).
For u* € Hz(A*; w), we have

Do) = Dolt),  Dgy(u) > Do, 0), 1< <.

The last inequality is an obvious fact on formal power series; see [8],

p. 89. Hence inequality (5) of the Main Theorem remains valid for (7).

But P*, QF may not be analytic in u, along u, = 0, since they contain

powers of u!/™. Notice that, however, P*, @} are analytic in %,,...,u,_;, 8,

when u,, is substituted by s™; this fact will suffice for our argument.
Next, let us consider d%¥, which carries the vector field (7) into

dv, 1 () d v (v) cic 1
= - 1< n—
dat v P*™*(v) v P**('v) SO ’
(8) n n
dv w
Ttn =P** ’

in €, where @;* (v) = QF (v,02, ..., v,_,9%, v,), L < i< n, P*(v) = P*v,08,
coy Vn_1py Vp)s _

In the following, we shall use 2 as a shorthand for the number 25 (4).

We assert that P**(v) = »2? U(v), where U(w) is a unit in the sense
that U(vyy ..., 9,_,, 8™) is analytic in v,,...,v,_,,8, and U(0) # 0.
In fact, since Pp.(u*) = 2 for all u* e Hy(i* ,w Yy O(P*™(C1y + vy Cuyy )
= 2 for all sufficiently small constants c;. Hence P**(v) = v U(v),
as asserted.

Similarly, each @}* 1 < < n, is divisible at least by »7*2,

Now, put », = s™ in order to obtain analyticity. Then (8) is trans-
formed into the vector field

dv, .

7;'=Vi('”11---1'0n—173)a 1<i<n-—1,
(9) m

ds 7 (’Ul, e vn—l! s )

4. ’
it ms™ P (v, ..., 0,_,, ")

where V, is the right-hand side of the ith equation of (8) with v, replaced
by s™. Note that (9) is so far only defined for s > 0. But by what we have
just proved, the numerators in (9) contain at least as many factors of s
as the denominators; after cancelling these factors, the denominators
become units, and so (9) can be extended, in an obvious way, into a vector

6 — Annales Polonicl Mathematici XXX VIII.1
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field defined and analytic also for s < 0. Moreover, for the cxtended
vector field, ds/dt = 0 when s = 0.

The above observation is of vital importance to our argument.

Let y,(vyy...y?,_,,8) denote the trajectory of the extended vector
field with (91, ..., Uy_1, 8) = (V1) -ov) Vp_y, 8). Let p{?, 1 <3 < n, denote
its components. By a standard theorem in ODE (see, e.g. [1], p. 119),
each y{" is an analytic function of v,, ..., v,_,, s, and ¢. Note that 4™ (v,, ...

eeyVUp_1,0) =0forallv,,...,v,_,, and all ¢. Hence &: s — y,(0,..., 0, s),
0 < 8 < ¢, 18 an analytic arc whose initial point 1/),5(0 , 0, 0) lies in the
coordinate hyperplane s = 0. (However, y,(0,. ) ;ﬁ 0 In general.)

Let 6 > 0 be small enough, then £ lies in the region 2 v < w? s> 0,
i=1

Define v, = y(v;), 1 <i<n—1, v, = y(s) = s, where s > 0. Then yc ¢
is an analytic are in the v-space, parametrized by s, which is contained
in the cylinder C, except that its initial point lies in the hyperplane », = 0.
Now ¥~ 'oyo £is an analytie arc at 0 in the u-space, belonging to H, (y*; w).
Finally, @ 'o¥ 'oyo & € Hy(A; w). This last arc, when using z, as the
parameter, is just ;04 by our construction. The proof of the Main The-
orem is now complete.

2 .
ILLUSTRATIVE ExAMPLE. In R, consider the autonomous system

(10) dv  y'z+y’) dy  aty?
a S+’ At 4290
and A(y) = (0,9), y = 0.

Unlike (1), inequality (5) is satisfied by (10), with 2, (1) = 4, dp (1) = 2,
Do, (B) = 6, Dy,(n) = 6. Hence ¢,04 is Newton-Puiseux.

Now, let us examine how the general proof works through in this
example. The first step, v = @(x), is not needed, as 1 is already the non-
negative y-axis. The second step, v = ¥(u), which blows-up the horn-
region %4, reduces to

v, =y 'z, v, =Y.
The image of (10) under d¥ is

dv, 149, — 200, dv, v}

) at 2 ' da 42’

where the common factors in v, have been cancelled. Now, (11) is defined
and analytic for all v,,v,. Hence v, — y,;(0,v,),v,> 0, is an analytic
are, and, for this example, ¢,0 4 is also analytic.

7. An apphcal:non to equisingularities. Let us first consider three
typical examples in R’. The first is the Whitney function

W,y,t) =ayle—y)[z—(t+2)y], Jti<]1,
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the sccond is Kuiper’s example,

K(z,y,t) =2°+y°+ia’y’, teR,
and the last one is the double cusp in catastrophe theory
D(z,y,t) =2 +y* +t2*y*, t # +2.

In cach of these examples, the singularities of the function are points
on the {-axis.

More generally, let F(x,, ..., x,,t) be a function defined and analy-
tic near 0 € R" x R, whose singularities form an interval I of the {-axis,
containing 0.

A local trivialization of F along I near 0 is a homeomorphism A between
two neighbourhoods of 0 in R™ x R, which preserves the {-levels, such that
h(0,1) =(0,%) and F(k(x,?) = F(z,0).

One may like to require that & be of class C*, in this case we have
a C*-trivialization. But this notion does not seem to be an interesting one.
Whitney showed, in [9], p. 238, that W(z, ¥, ?) did not admit any C*-
trivialization; Kuiper, in [2], p. 206, proved that K(z, y,t) had no C%-
trivialization. For D(x, y,t), C°-trivialization exists ([5], p. 152), but
there is no C*-trivialization ([7]), nor is there a C!-trivialization. On the
other hand, some kind of analyticity would certainly be more desirable
than mere differentiability. Thus we propose the following alternative ,

DEFINITION. A local trivialization h is called Newton—Puiseux if for
any analytic arc 1 at 0, #; = 4,(s), 1 < 7 < », lying in the coordinate hyper-
plane t = 0, h(A(s), t) is a Newton—Puiseux wing in the sense that there
exists a substitution s = 3, m a positive integer, for which h(A(5™), )
is analytic in (3, ?).

Every Newton—Puiseux trivialization is a real semi-analytic fibration
in the sense of Whitney ([9], p. 230).

oF oF oF

Recall that GradF = (6_501’ ceey az, % )
when # = 0, tel. As before, let &, denote the set of all Newton—
Puiseux ares at 0 in the hyperplane ¢t = 0.

THEOREM. Let P(x,t) = |GradF(z,t)|, @(x,!) = 0F/dt. Suppose
for every A e 2,

(12) Dp(4) is independent of 1,

and GradF = 0 only

and for each fired value of t in I,
(13) Do(A) =2 Zp(A)+dp(4).

Then F(x,t) admits a Newton—Puiseux trivialization along I near 0.
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One can verify easily that all the above three examples satisfy the
hypothesis. Hence they admit Newton—Puiseux trivializations.

Strickly speaking, P(x, 1) is not analytic, hence Zp is not defined.
This difficulty can be avoided by putting Zp = 12,,, where P* 's analytiec.

The first assumption (12) implies that d,(4) is also independent of ¢.

Given any (z* t*) off the t-axis, let ¢ = F(x*, t*), then F(z,1) =¢
is the level surface of F passing through (z*, t*), and is locally a manifold
there. The projection of the vector ¢/¢t to the tangent space at (z*,t*)
of the level surface is the vector

X(a* t*) = P(z*, t*)"Q(z*, t*)Grad F(z*, t*).
Then consider the vector field &/ot— X (z*, t*), which was constructed

in [3], [4] for similar purpose. Normalizing its ¢-component to 1, we find
the vector field

n
1~ , 0F 0 0
(14) %P ¢ oz, Ox; T
. oF oF
where P =.(—8E,...,—am—n ).

Along the t-axis, define (14) to be 9/0t.
Let ¢,(x) denote the trajectory of (14) with ¢,(x) = («, 0). Define

h(z,t) = gi().
We assert that h is a Newton-Puiseux trivialization.
Since dp(4) > 1, (13) implies that for all 4,

Dg(d) = Dp(2), dp(2) =dp(2).
Hence
Dy(4) = Dp(4)+dp ().

=, OF .
Observe also that ’P‘zﬁ < P7', 1< i< n Therefore the non-auto-
s
nomous system
dz; . , OF
—EoPQ—, 1<i<

satisfies the hypothesis of the Main Theorem, for every AeZ%,. Note
that the projection of ¢,(#) to the hyperplane ¢ = 0 is the trajectory of (15).
The proof is now complete.
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Added in proof. The main idecas in this paper has been developed
further in the following papers:

T.-C. Kuo, Modified trivialization of singularities, J. Japan Math.
Soc. (to appear).

T.-C. Kuo and J. N. Ward, 4 theorem on almost analytic equisin-
gularities, ibidem (to appear).

T.-C. Kuo, Une classification des singularités réelles, C. R. Acad.
Sci. Paris 288 (1979), p. 809-812.
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