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A generalization of the Malgrange—Zerner theorem

by Lupwik M. DRUZKOWSKI (Krakdéw)

Abstract. The main result of this paper is the following generalization of well-
known Malgrange—Zerner theorem on separately holomorphic functions. Let

n
X = | R-"1xPxRr"k , where P =R+i[0,1)<C,
k=1

let W = convex hull of X and further let f: X—C be a locally bounded function, such
that f|gn is continuous, and for any fixed point (%, ..., Tx—1, Tx41s .., T,) € RPL,
the function f(xy,...,Zx—1,°, Tx4+1s ---» T,) i8 holomorphic in intP, k =1, ..., 7.
Then the function f may be uniquely continued to a function holomorphicin int W and
continuous in. There are also given the two examples which show that the assumptions
in the above theorem in some sense are minimal.

Introduction. The classical Hartogs’ theorem (sec [5]) says that if
f =f(z, ..., 2,) is a function defined in a domain D in the space C" and
f is holomorphic in each variable z, € C separately, ¥ =1,...,n, when
the other variables have given arbitrary fixed values, then f is holomor-
phic in D. Hartogs’ theorem gives rise to the following natural question:
when does a function defined on a non-open lower-dimensional subset
of C", separately holomorphic (in a suitable sense), admit a uniquely
extension to a holomorphic function in some open set in the space C".
The Malgrange—-Zerner theorem is of theorems of this type.

In this paper we give a version of the Malgrange—Zerner theorem,
which is stronger than those given in [1] and [2]. In the classical version
given in [2] it is assumed that the function belongs to ¥*(X), where as
in [1] the function f has to be bounded and belong to ¥3(R™).

We write shortly: fe H(U) (¢(U), Sh(U)) if f is a complex or real-
valued function holomorphic (continuous, subharmonic) in a subset
U of C*. We denote ‘

P:={2eC;0<Imez< 1} = R+14[0,1),
X,:={2eC" 2.€P,z €eR for j #k},

X:= X, =R'+4ImX, W:=convX = R"}+iconv(ImX).
k=1
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The main purpose of this note is to prove the following generalization
of the Malgrange—Zerner theorem.

THEOREM. Assume that a function f: X—~C satisfies the following
conditions :

(i) f <s separately holomorphic in X, that is, for each k =1,...,n
and for each fiwed (214 ...y 24_1y Zy1y -y 2,) € R, the function f(z,, ...
9 %1y 'y By -o oy 2p) € H(IDEP)NE(P);
(ii) flgn € € (R");
(iii) f 48 locally bounded in X.
; Then there ewists emactly function fe H(Int W)N€(W) such that
flx =1
Assumptions (ii) and (iii) are independent, as will be shown in Section

2. In view of the results of Section 2, this generalization of the Malgrange—
Zerner Theorem is sharp.

1. Proof of the generalization of the Malgrange-Zerner Theorem.
LEMMA A. If a function f: X—C satisfies the conditions:
(i) f ¢s reparately holomorphic in X,

(ii) flgn € ¢ (R"),

(iii) f 98 bounded on X,
then e % (X).

Proof of Lemma A. Consider the function g(z) := f(2)-exp(—=22),
where 2* := 224 ... +22 for z € X. The function ¢ ha,s a.]l the properties
imposed on f and, moreover, g is uniformly continuous in ReX = R".
We will prove that g € ¥(X) which implies fe € (X). We take a fixed
point w € X and a number ¢ > 0. Let, for example, w = (w z) eX, =R"'x

xPcX and w = (z,2)e X, =« X. We have
(A1) Ig(a;', z)—g(z,2)| < lg(aos, z)—y(af), 2)|+exp U,(2),
0

0

where U,(2) := In|g(%,2)—g(x,?)|, 2 =t+iyeP. In view of (i) and
(iii) we get 0

(A2) U,eSh(P) and U, (s)< M f{for z€P.
Since ¢(x, ) € H(IntP)Nn%(P), we infer that
0
(A3) lg(x,2)—g(z,2)| <e/2, where z—z|<r,p:=1—r—Imz>0.
0 0 0 0 0

Now we quote following versions of the lemma of Two Constants
for Subharmonic Functions.



Malgrange—Zerner theorem 183
LEMMA. If a function U e Sh(P) is upper bounded, U(z)<m for
Imz =0 and U(2) < M for Imz =1, then
Ut+iy)<m+(M—m)y for t+iy e P,

(The proof of the lemma is analogous to the proof of the Maximum
Principle for bounded holomorphic functions in a strip, see [3], p. 244.)
Since g is @ uniformly continuous functions in R", we have

lg(z, 1) —g(z, )l <m for |w—a| <7,
0 0

where

m := exp(p~'[lne/2—M(1—p)]) <1.
Hence
(A4) U,(?) <Ilnm for Imz =0, |[g:—w|| <.

Applying the above lemma to (A2) and (A4), we obtain
U.z)<plnm+M(1—p) for |z—z)|<?, 0<Imz<l-—p.
0

From the definitions of the numbers m and p we have

(A5) expU,(z)<e/2 when |[z—z|<?,0<Imz<Imz4r<]1.
0 0
(Al), (A3) and (AB5) show that the function g is continucus at the point w.
' 0
LEMMA B (see for example [4]). If a function f: X->C satisfies the
conditions
(i) f vs separately holomorphic in X,
(ii) f e €(X),
(iii) f is bounded in X,
then there exists evactly one function f € H(Int W)n% (W) such that f|x = f.
Proof of the theorem. We introduce the following notation:

P(h) :={2eC;0< Imz< h <1},
X, (k) :=={2eC";2,€P(h),2;eR,j # m},

X (h) = me(h), B(r;, r):= {z € C; lz—ﬁl <t}

1

%
E(k, a) = {zeC;O<A1‘gT+—:<a<1:}

1
= B(—ikcotana, k_—-)n {#z € C; Imz > 0},
_ sing

where kF =1,2,...
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Pix h €(0,1) and put
B(k,h) := E(k,a,), where a, = 2/htan"'h/k,
E'(k, h) := E(k, B)\{—Fk; k}.

The following relations are evident:
00
(1) E(k,h) < E(k+1,h) < P(h) = | JE' (k, h).

k+1
We denote

9r(?) := kth-z—;’-‘- for z € P(h).

It is easy to see that g, is a conformal mapping from IntP (k) onto E(k, k)
and a homeomorphism of P(k) onto E’'(k, k). We write

G, (2) :=(gk(z1)1 vy gk(zn))y where 2; € P(h).
Since limg,(2) = 2 for z € P(h), we obtain by (1)

k=+00

(2) GylconvX(h)] < Gy, [convX (k)] = convX(h) c GGk [conv X (h)].

k=1
Let F,(2) := (foGy)(2) for 2 GE(—h). By Lemma A and Lemma B,
there exists exactly one function
F, eH(Intcoan(h))n‘g(convm—)) such that B |zm = Fy.
Putting f,(2) := (F,0G;")(2) for 2z € G, (convX (h)), we see that
(3)  fy € H[IntG,(conv X (h))] N¢|Gfconv X (h))] and f, =f
in G,(X (h)).

Therefore
fo =fn in GifeonvX(h)) for k< m

and’we can define

ft(z):= ka(z) for z € conv X (h).

k=1
By (2) and (3), it is obvious that

f* e H(InteonvX (h))n%(convX(h)) and f*=f in X(h).
Writing f:= |J f*, we hence obtain

0<h<1
fe H(IntconvX)Nn&(convX) and flx =F.

Remark. Let D, be a Jordan region in the complex plane C and let
E, < 0D, be a connected open subset of 0D, (in the sense of the topo-

logy of 6D,), k =1,...,n. Let us denote Y, := {ze€ C": 2, € B, VD,
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n
2 €H;,j #k} and Y:= (J Y,. If a function f: Y—C is separately holo-
k=1

morphic in ¥ (in the sense of assumption (i)), continuous in the set
E,x ... XE, and locally bounded in Y, then there exists exactly one
function f € H(Int V)N% (V) such that f|p = f, where

Vi={zeD;x ... xD,;Im[g,(2)+ ... +g,(2,)1 <1}

and g, is a conformal mapping from D, onto the strip IntP, such that
g (By) =R,k =1,...,n.

2. The independence of assumptions (ii) and (iii) in the Malgrange-Zerner

Theorem.
ExavmpLE 1. Consider the sets

B:={zeC; |2|<1}, E:={2eC; || =1,Rez> 0},
Y:= Ex(BUE)U(BUE) XE c C.
We define a function f: Y — C by the formula
2422,

f(2y 25) 1= lexp[—Log(l—zl)(l—zz)-Log ] for 2, #1, 2, #1,

0 forz;=1 or 2, =1,

where (2,, 2;) € ¥, —3}m < Argz < 4. It is not defficult to check that ;
f(-y2) e HBYn¥(BUE) for 2,eE,
f(z,") e H(B)Nn¥(BUE) for 2, €k,

f is bounded in Y, but f ¢ ¢(E x K) because I,i_lf,}f(eu’ e ) =1 #£f(1,1)

= 0.

ExAMPLE 2. Preserving notation of the preceding example we define
342,
— Log? —— f 1
g(21, 25) 1= [GXP[ (21 +a) Liog 1—z2] or % # 1,
0 for z, =1,
where (2,,2,)e Y,0< a < }.
Obviously, g is separately holomorphic in Y, g€ ¥ (¥ xE), but g
is not locally bounded in Y.

Namely, taking
2(t) = ¢ eE and
3+ 2,(t)
1—2,(?)

-1
2. (t) = —a—i—(ReLog2 ) +aieB for 0<i<l,
we have |g(2,(?), 2,(f)|]—>oo when {—0".
Thus ¢ is an unbounded function in each neighbourhood of the point
(—a+ia,1l)e BXE.
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