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Global asymptotic behavior of solutions
of positively damped Liénard equations

by GEORGE SEIFERT (Ames, lowa)

Zdzislaw Opial in memoriam

Abstract. If fand g are continuous on R to R, and satisfy f (x) > 0 for all x, xg(x) > O for all
x #0, we show that the equation x”+f(x)x"+g(x}) =0 may have solutions x(t) such that
(x(£), x'(2)) does not tend to (0, 0) as t — co. If the solutions are uniquely determined by their initial
values, a general classification of the global asymptotic behavior of all solutions of such equations
is given.

We consider the scalar second order differential equation
(1) X"+f(x)x'+g(x) =0

where f and g are continuous on the set of real numbers R and satisfy f(x) > 0
for all x and xg(x) > 0 for x # 0.
It is well known that if either of the following conditions hold:

X

(i) fg(s)ds > +oc  as x—» o0 and as x - — o0,
0
(ii) [f(s)ds—> +0 as x— o,
0

- — 0 as X — — o,

then all solutions x(t) satisfy (x(t), x'(t)) — (0, 0) as t — oo; cf. for example, [1];
pp. 224-227.

It also is easy to show that if x*(0)+x'?(0) is sufficiently small, then
(x(t), x'(t)) = (0, 0) as t — oo; in fact, the critical point (0, 0) of the equivalent
system

(2 X=y, y=—f(x)y—g(x)

is uniformly asymptotically stable, and if either (i) or (ii) hold it is globally
uniformly asymptotically stable; cf. [1] or any nonelementary textbook on
ordinary differential equations.
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This note concerns itself with the question: are there systems (2) for which
there exist solutions which do not approach (0, 0) as t — 00? Our first result
answers this question in the affirmative and shows that for a fairly large class of
systems (2), there exist such solutions. We then give an analysis of the
asymptotic behavior of all solutions of (2) where only the basic conditions on
f and g as stated after (1) are assumed with the additional requirement that
solutions of (2) be uniquely determined by their initial values. Our methods are
fairly standard and primarily geometric.

cfore stating our first result, we note that if x(f) repesents the state of
a physical system such as the displacement from equilibrium of a damped
spring, the corresponding total energy E = (x'(1))*/2+ G(x(t)), where

G(x) = Eg(v)dv

satisfies dE/dt = —(x'(t))*f (x(t)), from which we see that if x(¢) is not trivial
solution of (1), E is strictly decreasing as t increases. One may thus refer to such
a system as dissipative.

THEOREM 1. Suppose there exists a constant « > O such that one of the
following holds:

(a) sup {f(x)e**: x>0} <0 and sup{g(x)e**: x >0} < o0,
(b) sup{f(x)e™: x <0} <o and sup{—g(x)e ***: x <0} < 0.

Then there exist solutions (x(t), y(t)) of (2) which do not approach (0, 0) as
t = 0. More precisely, if (a) holds there exists an a§ > 0 such that any solution
(x(¢), y(2)) with x(0) = 0, y(0) > aq satisfies |x(r)] = co as t — co. If (b) holds, an
analogous constant a; < 0 exists.

Proof. Fixed a>0, b>0, we denote by C(a,b) the graph of
y=ae **+b, x > 0,and by I'** the positive semi-orbit of a solution (x(t), y(r))
of (2) with x(0) =0, y(0) > a+b. As long as y(t) > 0, x(t) increases with ¢; so
either I' " intersects C(a, b) at a first point (x,, ¥,), X, > 0, y, > 0, or it does
not. If not, the conclusion of our theorem follows since the only point any
solution of (2) can approach as ¢t — oo is (0,0).

So suppose (xq, yo)€Cla, b)nI'" where (x(to), y(t,)) = (xo, yo) and
y(t) > ae ™+ b for 0 <t < t,. Clearly the slope of C(a, b) must not be less
than the slope of I'* at (x4, y,); ie,

—oae ™ 2 —f(xo)—g(xo)(ae” ™ +b) = —f(xo)—g(xo)e"*/a;
aa? < af (xg)e™™ +g(xg)e*™ < af g +9go »

where f§ =sup {f(x)e™™: x =0}, g5 = sup {g(x)e>™: x = 0}. Clearly, for
a>ag =[fq+(fd*+4g3 a)"/*]/2a this is impossible, and the conclusion of
our theorem follows.
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Using the graph of y = —(ae®*+b), x <0 and a completely similar
argument, we obtain the existence of a; <O such that for any solution
(x(2), y()) with x(0) =0, y(0) < ag it follows that x(f) > —o0 as ¢ — o0.

COROLLARY. Let hypotheses (a) of Theorem 1 hold and let ag be as in the
conclusion of this theorem. Then for any b = 0 and any solution (x(t), y(t)) with
x(0) =0, y(0) > ag +b, it follows that

b<limy(t) <ay+b.

=
An analogous result holds if (b) is satisfied.

A proof of this corollary follows easily from the details of the proof of the
theorem.

We now discuss the asymptotic behavior of all solutions of (2) without
conditions such as in Theorem 1. We first give a result for a certain large class
of solutions; i.e., solutions (x(¢), y(¢)) such that x(0) = 0, y(0) > 0 and indicate
how extensions to other solutions can be made.

THEOREM 2. Suppose the solutions of (2) are uniquely determined by their
initial values. Then there exist a, and a,, 0 < a, < a; < oo, such that if
(x(¢), y(t)) solves (2) with (x(0), y(0)) = (0, a) then

(1) a = a, implies y(t)>0, t 20 and
lim (x(t), y(8)) = (+ o, L(a)).

(i) a, < a < a, implies there exists t,(a) > 0, L(a) < 0 such that y(t) > 0,
0<t<tya), x(t,(a) >0, y(t,(@) =0, y(t) <O for t >t (a), and

lim (x(t), y(t)) = (— 0, L(a)).

t— o

(iii) 0 < a < a,, implies lim (x(r), y(1)) = (0, 0).

Note.

If a, = o0, only cases (i1} and (i) can arise;

if a, = a,, only cases (i) and (iii) can arise;

if a, = a, = o0, only case (iii) can arise; in this case (0, 0) in fact is globally
asymptotically stable.

Proof. If for every solution (x(¢), y(t)) of (2) as in our hypotheses,

lim (x(?), y(t)) = (0, 0), we take a, = a, = o0, and we are done; the fact that in

t—~w

this case all solutions are attracted to (0, 0) as t —» oo is easy to verify.
Suppose this is not the case. Then define

a, = inf{a > 0: y(t) > 0 for t > 0}.



286 G. Seifert

Ifa, < o0 and a > a,, x(¢) is increasing for t > 0 and x(t) » + o0 as t — o0; if
not, (x(t), y(z)) would approach a critical point of (2) distinct from (0, 0), and
none such exist. If a, = co we go, as noted above, to cases (ii) and (iii). Since
(0, 0) is asymptotically stable, a, > 0. Suppose 0 < a < a,. Then there exists
t, = t,(a) > 0 such that x(¢,) >0 y(t,) =0, y(t) >0, 0 <t <t,. By the con-
tinuity of solutions of (2) in terms of their initial values, it follows that if
a, < oo, the solution (x(t), y(r)) with (x(0), y(0)) = (0, a,) satisfies y(r) > O for
t=20, x(t) » o0 as t —» 0.

If for all a, 0 < a < a,, (x(t), y(t)) > (0, 0) as t — oo, we take a, = a,; (iii)
then holds and we are done.

Suppose there exists a, 0 < a < a,, so that this last last condition does
not hold. We claim that in this case, x(t) - —oo and y(t) <O for ¢t >¢,.
Suppose not; then there exists a t, = t,(a) > ¢, such that y(t,) = 0, x(t,) <0,
and y(r) < Ofort, <t <t,. It follows that i in this case there exists t, > ¢, such
that y(t,) > 0, x(t;) =0, and y(t) > O, ¢, Zt< t. But it must then follow

that y(t,) < a; to see this consider V(x, y) = y/2+ G(x) where G(x) = jg(s )ds;

then we casily get

av
= (x(0, y(0) = =f (x@)*®),
and integrating this from 0 to ¢, yields

y3(t3) < y*(0).

Hence wusing the Poincaré—Bendixson theorem, it follows that
(x(®), y(©)) = (0, 0y as t —» oo. Thus we have a, = a, again and we are done.

So as claimed above, there exists a, 0 < a < a, such that x(t) - — o0, as
t - oo, and y(f) <0 for ¢t >t,. Define

=inf{a>0: y(t) <0 for t >t,}.

Clearly a, < a,, and our proof is complete. The cases a, < a, < o0 and
a, = a, < oo are illustrated respectively in Fig. 1 and Fig. 2. In the following

yﬂ
a; ¢

ap=a, ¢
ag ¢ +
0 51

r* aqg) \

*\
PN



Solutions of positively damped Liénard equations 287

discussion we always assume as in Theorem 2 that solutions of (2) are uniquely
determined by their initial values.

Let I'* (a) be the positive semi-orbit of the solution (x(t), y(t)) of (2) such
that (x(0), y(0)) = (0, a), a > 0. Define

Sy =U{I*@:aza), S{=U{I*@: ay<a<ay,
Se = {I'"(a): 0<a<ay}.

These are mutually disjoint regions of the (x, y) plane; cf. Fig. 3. Note that
St and S7 may be empty, but Sg is always nonempty. If §* = S5 US{ U S5,
it follows easily that if (x(t,), y(to))€S*, then one and only one of 3 possibilities
exist for the solution (x(t), y()):

(@) (x(t), y(©)) > (+ o, L) as t > o0, L > 0;
(b) x(t,) > 0, y(t,) = O for some ¢, > t,,y(t) <O for t > t; and (x(t), y(¢))
© (x(0), y()) > (0, 0) as t - co.

If we consider the negative semi-orbits I' ™ (a) of solutions (x(¢), y(1)) such
that (x(0), y(0)) = (0, a); ie,

I~ (a) = {(x@, y(0): t <0}

we can extend our considerations to parts of the (x, y) plane outside of S*.
Consider first I' ™ (a,) with a, as in Theorem 2; either it intersects the negative
x-axis or not. If it does, it must also intersect the negative y-axis and stay below
the x-axis as t - —oo, for if this were not the case, it would intersect the
positive x-axis and subsequently the positive y-axis at a point (0, a) with
a < ay; this would again lead to a contradiction using V(x, y) as above.
We thus have the two remaining possibilities: either I’ (a,) is entirely
above the x-axis or it intersects the negative x-axis and remains below it for
decreasing t. In the latter case, using the definition of a, and a, we see easily
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that we must have q, = q,, i.e, all orbits I'* (a), ¢ < a,, are attracted to (0, 0)
as t — co. In the former case, we may have g, < a,. (cf. Figs. 3, 4.) We also note
that if a, < a,, the first of these two possibilities must hold.

Thus in any case, I'(a,) = I'* (a,) v I' " (a,) bounds a portion of the (x, y)
plane, namely that portion not containing (0, 0), which consists of orbits which
do not approach (0, 0) as t — o0; in fact, in case a, = a,, it consists of all such
orbits while the remaining orbits do approach (0, 0) as ¢t - . In case a, < a,,
this maximal region of nonattraction is the portion of the plane bounded by
I'(a,) which does not contain (0, 0).

If we now define I'"(a) to be the negative semi-orbit of the solution
(x(2), y(£)) with (x(0), y(0)) = (0, @), a > 0, we can consider regions in the (x, y)
plane outside S*. Again various cases arise.

We note that any solution x(t) of (1) which does not approach 0 as t - o
can have at most two zeros for teR.

We conclude with some observations about solutions with orbits
I'(a), a = a,. From Theorem 2, we see that for each corresponding solution
(x(#), y()), we have lim y(z) = L(a) > 0.

t— o0

It follows easily that L(a) is nondecreasing for a > a,. It also follows, using
a standard argument involving continuous dependence of solutions on initial
values, that the set {L(a): a > a,} must be dense in [L(a,), ©). It follows then
that L(a) is in fact continuous for a > q,.

Some interesting and apparently open questions arise regarding this
function L(a);

(1) Can L(a,) > 0? If so, under what conditions will L(a,) = 0?
(1) Is L(a) strictly increasing for a > a,? Again, if not, are there conditions
under which it is?
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