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Approximate determination of eigenvalues and eigenvectors
of self-adjoint operators

by JoseEr KoroMY (Praha)

Abstract, A method (1), (2) for calculation of eigenvalues and eigenvectors of
self-adjoint operators is investigated. It is shown that the sequence (u,) defined by
(1), (2) converges to A,, where the least upper bound of the spectrum o¢(4) of 4 is
not necessarily an eigenvalue of A. If 4, is an eigenvalue of A (necessarily iso-
lated), then (u,) converges to the corresponding eigenvector of A.

- Let X be a real Hilbert space with the scalar product ( , ), and
let A: X—>X be a linear self-adjoint positive operator defined on X.
By saying that A is positive we mean that (Au, ) > 0 for all w e X,
% #* 0, and that (Au,u) = 0 implies # = 0. Since 4 is self-adjoint and
is defined on all of X, 4 is bounded by the closed graph theorem. The
spectrum o(A4) of A lies in the segment [m, 4,], where m = inf{(4du, u):
lul| =1}, m>=0, and 1, =sup{(4Au,u): || =1}, We introduce an
iterative method of calculation of eigenvalues and eigenvectors of A
as follows. Let B denote the set of all real numbers, and let u, € X be
an arbitrary element such that u, % 0. Define a function f: B xX—-E by
flr,u) = |Au—7ul?} e R, ue X. Let yu, denote that value v at which
the function v—f(7, u,), T € B, assumes its minimum on R, i.e., f(u, %)
= min {|[Au,— 1u,el*: v € R}. The condition f,(u,,%,) =0 implies pu,
= (Aug, %o) Ul 2. Put u; = uy'Au,. Since A-is positive, u, >0 and
u; # 0. Having u, and %,, the condition f,(u,, ;) = 0 gives u, = (Au,,
u,) lu, |72 Put %, = u; ' Au,. By repeating this procedure, we obtain the
following iterative process

(1) Upya = P‘;-II-IAun7

(2) bogr = (AU, u,) ”un“—z’ n=0,1,2,...

where u, > 0, u, # 0 for all n. The procedure (1), (2) is similar to that
of Birger; the latter runs as follows:

(3) Y1 = an+1Ayns Qi1 = (Ayny yn) "-Aynll—z'
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I. A. Birger [2] suggested this method without any motivation of
convergence and estimates. He has found (applying it to engineering
problems) some advantages of this method in comparison with the other
ones; see also G. I. Marchuk [11], where a similar observation has been
done on the ground of physical ideas.

The proofs of convergence in this case of the processes under discus-
sion for compact and symmetrizable operators were given in [5], [6], while
the estimates for those methods were derived in [7]. I. Marek [9], [10]
proved the convergence of those procedures in Banach spaces for linear
bounded operators having a dominated eigenvalue. W. V. Petryshyn
[13] deduced from his very general theorems the convergence of the
method (1), (2) for unbounded linear operators having the dominated
eigenvalue. Results related to that of [13] have been obtained by R. I.
Andrushkiw [1].

The purpose of this paper is to show that the sequence (x,) also
converges in the case when the least upper bound 4; of the spectrum
o(A) of the self-adjoint operator A is not an eigenvalue of A and to get
rid of the condition that A, is an isolated eigenvalue of A.

We shall use in the sequel two following lemmas.

LEMMA 1. Let X be a real Hilbert space and A: X —>X a linear posi<
tive self-adjoint operator on X. Then the sequence (u,) defined by (1), (2),
where u, # 0, s monotone increasing and convergent.

Proof. First of all, note that 0 < u, < ||[A]] and |u,l| < |, .l for
each n. The last relation together with (1), (2) show that (4u,, «,) < (4%,,
U%n41), while the Schwarz inequality and the positiveness of A imply

(4) (Au,, un)g(Aun-H)un-{-l)?. n=20,1,2,...
We have u,(Au,, %,) = b, (A%,_,, u,). Indeed,
aun+1 (Aun—u un) = (Auny un) IIHnH_z (A'“n-u un)
= (A, ) 1%, )72 100512 1«

Using the last equality, the Schwarz inequality and (4), we obtain
Yo < iy for each n, Hence there exists limpu, = 4 and u, < p< 4.

n—0
LEMMA 2. Under the assumptions of Lemma 1 the sequence (|u,),
where the u,, are defined by (1), (2), is bounded.

Proof. Put v, = u,/|u,l; then wv,,, =a,,,4v,, where a,, ,=
-1 -1 -1
loen|Plloty g s I™" (A, ,, w,)~"'. Then (v,,9,.,) = lu,ll-llu, 17", Dbecause
(%p s Upy1) = 4, )% In view of the last relation, it is sufficient to prove that
(-]
the product [] (v,, v,,,)”" converges. Now, we have

=0

(6) Av, = A“n'““n”_l = .“n+1||un+1||l|un”-1@n+1

-1
= .u'n+l ('vn’ ’vn+l) vn+l'
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Taking (5) into account we get
(6) (Vn—13 Vnt1) = fpi1(Vps Vp 1) (Vn—1y AVy)

= n“;-ol-l(”m "’n+1)(A"7 —19 Vp)

= :“n/‘;-ll-l(”m 'Dn+l)('0n—ls 'Un)—l'
Again by (5)

0< ‘On_vn-lr 'A(vn_vn—l))
= (0, —Op_1y By1(Vny Vpy) 00— B, (0,1, 0,) 71 0,)
= Pni1— tns1(Vns Pns1) T (Pno1s Vnga) — i (Vs 00) 71+ fhg

These relations and (6) imply

Pyl +lun -Zaun(vn—li ’vn)_l = 0.

Hence
1— (0,1, 9,) <1 —2p, (4, + pip )"}
_ 1
= (Bps1— tn) (g Flny1) "' < S (Hpy1— Ba)-
1
Therefore
$ S
(8) D L=y 01 < D 5 (e — )
n=1 n=1 ‘ul

\

The sequence (u,) is convergent by Lemma 1; thus the series on the left
of (8) converges and this proves our lemma.

The proofs of theorems which follow depend on Lemmas 1, 2 and
the spectral analysis of self-adjoint operators. Let {Z,} be the spectral
resolution of the self-adjoint linear operator A: X—+X. We show that the
sequence (u,) converges to 4, for “almost all” starting approximations u,.

THEOREM 1. Let X be a real Hilbert space and A: XX a linear
self-adjoint pogitive operator on X. Suppose that u, € X is a vector such
that E,u, # u, for each A < 2,. Then u,2,, where (u,) is defined by (1)
and (2).

Proof. By Lemma 1, u,7u and u < 4,. We have to prove u = 4,.
Suppose u < 4, and put ¢ = }(u+4,); then p, <p<a< i, for n>1.
Put 8 = [a, 4,], a = au~". Then for » > 0 we have

4

VB (B) tnial® = (BB Unysy Unsn) = pints [ 2d( By, u,)

a
4

> a [ (Byu,y u,) = a1 B()ug|.

a
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Continuing this process, we get
1B (B) u, | = a® || B (B)w,l?

for all » > 1. Since E(f)u, # 0 by our assumption and a > 1, we obtain
\E (B)u, ||+ oo a8 n—>o0, which contradicts the boundedness of [lu,|l. The
theorem is proved.

Remark 1. Let A: X—X be a linear self-adjoint operator on & Hil-
bert space X and assume that the starting approximation u, of the pro-
cedure (1), (2) has the form u, = a,2,+Z,, where x, € ker (A4 —4,), |z, =1,
Z,ecker(4—A4,)* and a,> 0. Then the sequence (u,) defined by (1),
(2) can be expressed as u, = a,2,+Z,, where Z, eker(A — ).1) y Oy
>0, n>=1.

Indeed, let us assume that the representation of (,) is valid for n = 4,
i.e., let w, = a,2y+Z;,, where Z; e ker(A i)t and a;> 0. Then %,
= prirAv; = 81T+ 2y, Where a; = pi) a0, 2y = I‘:+1AZ Wehave
(#,Z,,,) = 0 for each x e ker(4 —1,), because Z, € ker(4 —4,)" and this
subspace is invariant with respect to 4. Thus the assertion of Remark
1 is valid for » = 441 and hence for all .

THEOREM 2. Let A be a positive linear self-adjoint operator from a real
Hilbert space X into X. Suppose that A, is mecessarily an isolated point of
a(A) of A and that E,u, + u, for each A < A, and any starting approxi-
mation u, € X. If u, is of the form wu, = agx,+Z, where |x,)l =1, z,€
ker(4 —2;), Z, eker(A — i)' and ay> 0, then |u,— Nzo|—0 as n—>oo,
where N = sup |ju,|| < oo.

n=1,2,...
Proof. Suppose u, = a,z,+Z,, where

o ker(Ad—12,), |wll =1, Z,eker(4—A4), a,>0.

Assume m < 4, (if not, then, by the spectral theorem, A = mlI,
where I denotes the identity mapping in X). Taking A such that m < 4
< 4,, we have

Al — (Au,, u,) > (4, — ) | B w2, 7 =0,1,2,...
Indeed,

4

Rl )2~ (A, w,) = [ (3 —t)d(Eu,, u,)

m

A A

> [ (=0 Byry, uy) > (4 —1) [ d(Byu,, u,)
m m

= (A —4) 1B u,|*.

Hence |E;u,||—~0 if n—~oc, by Theorem 1. Thus ||(I—E,)u,|—>N as
n—oo, because |u,|| #N. Put P, = I—-E,_,. We have E,~E; _, if 1+4,
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in the strong point operator topology. Therefore I — E,—P, strongly on
X as A—>21,. Moreover, P, is the projection of X onto ker(4 —4,). By
Remark 1, the sequence (u,) determined by (1), (2) is of the form u, —
a,2,+Z,, where Z, € ker(4 — ,)*, a, > 0. Hence P,u, = a,z, and ai
= ||[Pyu,ll*. Now, A, is isolated, i.e. o(4) — {4} < [m, M] for some
M>0. If M <A< 4, then '

|8y — N1 = {[Potigll — N| < [IPote,ll — (I — Eq) w || +| (I — By) w,, | — |
= |I(I — B)u,l — N|

and hence a, - N. It follows from the equality |ju,[? = a,+2Z2 that ||Z,|—0-
if n—>oo. The equality |, —Nzyl® = (a,—N)*+|Z,)|*> and the above
conclusions finish the proof. '

Similar results to these obtained in this note are valid also for the
Birger method and Kellogg method. Let us remark that the method (3)
for non-linear operators has been investigated in [3] and that the proces-
ges (1), (2) and (3) are related to the Schwarz constants method [4]. An
extensive bibliography concerning the various methods of calculation
of eigenvalues and eigenvectors of linear continuous operators is given
in [8], [13], [14]

I thank the referee for considerable simplifications of the original
proofs of Theorems 1, 2 and helpful comments.
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