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On the existence of a fundamental solution
for a parabolic differential equation
with unbounded coefficients

by P. BesaraA (Gdansk)

Abgtract. We prove the existence of a fundamental solution for a linear second
order parabolic equation under assumptions which allow the coefficients to grow
to infinity in various ways (see Assumption II below).

The fundamental solution for equations with unbounded coefficients was treated
in [1] and by the same method the result was improved in [2]. Our result extends
those of [1], [2] in two directions. Namely, the assumptions concerning the growth
of the coefficients are considerably less restrictive and, moreover, the assumptions
on the regularity of the coefficients are weakened by eliminating the Hélder con-
tinuity of their derivatives and replacing the classical derivatives by weak ones.

The method used here is based on that applied in papers [1], [2]. The most
essential change is introduced in the proof of the boundedness of the sequence of
Green functions. Owing to this change we do not make use, contrary to [1], [2], of
the existence of the Green function of the adjoint operator.

1. Denote by z = (2, ..., @,) points of the Euclidean n-space R"
(n>1) and by?¢ points of the interval <(0,7T),0< T < +oo. Let
8 =(0,T)xRE" 8§ =0, T)xR" We consider the equation

n n

(1.1) L) = D aylt, ) Uz, + Db, &)ty + 08, @)U — 14y = 0
1,§=1 I=1

for (¢, x)eS.

A funection I'(t,x;t, &) defined in D: 0< 1<t T; o,8eR" I8
said to be a fundamental solution of (1.1) if it has the following two prop-
erties:

1° I'(t, z; 7, &) considered as a funection of (¢, ) for any fixed (z, &)
€{0,T)x R* has continuous derivatives I}, I, (4, =1,...,n)
and satisfies (1.1) in (7, 7> X R".

2° for any continuous function ¢(2) with compact support in R"
we have

zx;

lim [T, 2; 7, He(£)dE = ().
(t,2)>(r+,2) g
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Throughout the paper we make the following assumptions concern-
ing the coefficients of (1.1):

1. ay, b;, ¢ are Holder continuous with respect to (t, x) on every compact
‘subset of S, ay = a;;, and for each t<(0, T) there ewist weak derivatives
(€7 (ai,)%.zj, '(b,-)zj in R* (1) (¢, =1,...,n). Moreover, there is a con-
stant x > 0 such that

Zaij(ti @) A4y = x|A
%9

for (t, x)e8, A = (4,, ..., 1,)eR", || being the Euclidean norm of A.

I1. There exists a function h(t, x)cC%(S) with Holder continuous second
order x-derivatives on every compact subset of S and such that h(t,x) > 0
on S,

(12) L(h)+h] X (@), — D) (B, | <0
. i
for each te(0, T, almost all zeR" and for n = 0, n = 1, where
(1.3) Z] - 2h_1 2 a,‘-jhz',—l-bj.
3

Note that if (1.2) holds for » = 0 and 5 = 1, it also holds for each
7n¢{0, 1). If, in particular, the coefficients satisfy the growth conditions
assumed in [1] or [2], Assumption II holds true.

2. TeEoREM 1. If Assumptions I, 11 are satisfied, them there ewists
a fundamental solution I'(t, x;t, &) of equation (1.1) which satisfies the
inequalities

(2.1) 0<I't, 257, &) < C(t—7)"™*h(t, x)[h(z, &) in D,
22) [T, 257, Hh(z, HAE<h(t, o)  for (t,x)e(z, T> x B,
RP
(23) [T, 57, §)h(t, 0)ds < 1[h(z, £)  for (z,£)e(0,1) x ",
RrR"

C being a positive constant depending only on n and x.

In order to prove Theorem 1 we first prove a similar theorem for
a transformed equation. Namely, set u({, z) = v({, )h(¢, 2) into (1.1).
We obtain for v the equation

(2.4) F(v) = Y ayo g+ D by, + 60—, =0,
%, I}

() A function fzi(:v) locally summable in R”" is said to be the weak derivative
of a function f(x) locally summable in R™ if for any function y(x) of class C! and with
compact support in R® we have
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where 3,- is given by (1.3) and
(2.5) ¢ = h™*L(h).

Evidently, if y(¢,x;7, &) is a fundamental solution of equation
(2.4), phen ‘

(2.6) L', w57, ) =y, @57, £)h(t, ©)/h(z, §)

is a fundamental solution of (1.1). Thus Theorem 1 is an immediate con-
sequence of the following

THEOREM 2. If Assumptions 1, I1 are satisfied, then there exists a fun-
damental solution y(t, x; T, &) of equation (2.4) and satisfies the inequalities

2.1 0< y(t,z37, )< Ct—1)"™* in D,
(2.8) [r@, @57, HaE <1,

Rn
(2.9) Jrt, 257, Has <1,

Rﬂ.

C being the same as in (2.1).

3. Proof of Theorem2.LetS,, = (0, T> X (jzj<m)(m =1, 2, ...).
In each §,, the coefficients of equation (2.4) are bounded and Hélder
continuous. Hence the Green function y,, (¢, z; 7, £) for (2.4) in each S,
exists and has the usual properties [3], [4]. Since ¢ < 0, by the maximum
principle we obtain, as in [1],

(3.1) [ vty @;7, HHaE<1  for lg|<m, 0<T<i<T.

1¢l<m

Extending the definition of y,(t,2; 7, &) by setting »,, = 0 for
j#| = m or |£|>m one can show, as in [1], that the sequence {y,}
(m =1,2,...) is non-decreasing in D (and obviously y,, = 0).

We shall prove that the sequence {y,,} is convergent and its limit
function is a fundamental solution of equation (2.4).

We first show that

32) [ yalt,@i7, Hdw<1  for |El<m, 0<T<I<T,
lzl<m

and

(3.3) 0 < ym(t, @57, §) < CE—7)™""

for some constant ¢ which depends on # and » but which is independent
of m.

Under our assumptions on the regularity of the coefficients we cannot
assert that y,, (¢, x; 7, &), as a funection of (r, £) is the Green function of

7 — Ann. Polon. Math. 20.4
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the adjoint equation. Therefore we prove [(3.2), (3.3) in a somewhat dif-
ferent way from that followed in [1].
For fixed (t, £)e{0, T) x R" let

(3.4) 9 = Gmpe =(7:;+'33)p,3_3’1 m> &, e>0,p>1
and
(3.5) Bupet) = [ gdw, t>1.

lzl<m

For t > v we have y, and its derivatives (y,),;) (¥m)zq, are.contin-
uous functions of = for || <m and y,, =0 for || =m [3], [4] Extend-
ing y,, by setting y,, = 0 for |x| > m we can show that g, as a function
of x for any fixed te(r, T), is of class C*(R") and g = g, = Goiz; = 0 for
l¢| = m (¢,j =1,...,n). Thus ¢g and g, are admissible as the test func-
tions y appea,rmg in the definition of the weak derivatives. Now, by &
direct computation we get from (3.5) and (2.4)

(3.6) dE’"”‘(” f Z:aﬁ,g%dahL f Zb,g,da:+

lzf<m 1,5 ll<m J

) P_, 2_,
+ fpc(yfn»+e°.)° v de — fp(73n+83)3 Yml(P—1)y5+26%1 X

lz|<m lz|<m

X D) ay(vnde(ymlsyde = Jy+d5+d5— .
i3

Assumption I and the properties of funetion g imply

Jl = fz (a{j)x,-zjgdmr Ja = - fZ (i;j)zjgdw'
| Rr W Rn 7
Making use of the inequality
[ [#é+ 2 (045} ga; — 2 (b)z;|9dz < 0
lz|<m
following Assumption II, we find, by (3.6),

dE,,,

p_
PR fPE[ea(Vi.-Fe“)’ ) dn—

lzf<m

(3.7)

2_
~ [ pOntey 2ym[(p71)y;,+zg’]Z.aﬁ(ym),‘(y,,,),,dw,

|z)<m

Consider the case p = 1. The second integral on the right-hand side
of (3 7) can be omitted since its integrand is non-negative. Next, let s—>0
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in (3.7) and then integrate the inequality thus obtained from (3.7) on
(z, t), making use of the relation

lim [ yult, @57, §do =1
T4 lzl<m
{cf. [4], p. 83 and 87). Hence we conclude that (3.2) holds true.
Now let p > 2. In this case we first omit in (3.7) the integral

2g
- f p(yvsu'l_es)s 7m'2€32a’¢j(7m)z‘(7m)zjdw < 07
lzl<m 1.1
and then take the limit as e—0. In this way we obtain from (3.7) the
inequality which, after using parabolicity, can be written in the form

ABn(t) _ _ 4x(p—1)

3. <
(3.8) o .

| LA

|zl<m
where we have written F,, instead of E,,,,.

On the other hand, since y,, is an element of the Sobolev space W*?
(lz| < m), y,, is eontinuous for |z| < m and y,, = 0 for {#| = m, we have
vme Wh¥(|z| < m) (see [5], Theorem 2, p. 104). The same is valid on y??
for p > 2. If we set y,, = 0 for |z| > m, we have y?*¢ Wi*(R"). Applying
to the function yP2 Nirenberg’s form of Sobolev’s inequality (see [5],
Theorem 4, p. 68), we find ’

(3.9) [ <o [ 7.0 | y:;!*dw)"’_“,

lzl<m jxl<m lzl<m

6, > 0 being a constant depending only on n. By (3.8), (3.9) we get

aE, (i —1) _ni2 22 4
Ll o 2OV g o [ )™,
_ _’P lzl<m
whence, for p = 2F,
2k -1

d
(3.10) BN > oy

dt

B, (k=1,2,..),

_ntl
where x», = (8x/n)6, ™ .
We shall prove by induction that for every positive integer k the

following inequality holds true:
(3.11) o T

k
where 8, = >'1-27
=1
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It follows from (3.10) for ¥ = 1 and from (3.2) that
d —2/n
';1_; {Emz } = ”n/z .
Integrating this inequality on (z, t), we obtain
—2/ %y
B3 (1) > 2 (=)

because (as can easily be shown by using an estimate from below of a fun-
damental solution [4], p. 83)

(3.12) [ yhdz—co as t—7 for p> 1.

|2l<m

Thus (3.11) holds for ¥ = 1. We shall show that if (3.11) holds for
a certain k, it holds for ¥+ 1 too. By (3.10) with k replaced by k+1 we
have

L) P
mak+1 Z ¥n gkl mak ?

whence taking advantage of (3.11) we find

3.13 E-2n (1)} > 2 B ety i
(3.13) { mzk+1( )} ok+1 ( 7) .

Finally, if we integrate (3.13) on (1: t) and use (3.12), we obtain (3.11)
with k replaced by &k +1.
Inequality (3.11) yields

- - 2 -t _._’1’( —2—ky
(3.14) (Emk(t))”z"g %, * k’z =1 (t—1) ® l .
Since
(Emp(t))l/p_>ﬁax7m(t’ x;7,&) a8 p—>oo
Z|<m

(-}
and > 127} = 2, we deduce from (3.14), after letting k—> oo,

l=1

-nf2
m(ly 25 T, E)Q[ﬁf'(t—f)] ’

and thus (3.3) is proved.

Since, moreover, the sequence {y,,} is non-decreasing, it is conver-
gent at each point of D. Its limit function y(t, z; v, £) satisfies — by
(3.3), (3.1), (3.2) — inequalities (2.7), (2.8), (2.9).

Now using the interior Schauder estimates one can show, as in [1),
that y(t, o; 7, £) satisfies equation (2.4). The proof that y has the remain-
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ing properties required in the definition of a fundamental solution is
also similar to that of paper [1] and will be omitted here.

4. Consider now the Cauchy problem:
L(u) = f(t,z) for (¢, z)e8,

(4.1)
u(0,2) = ¢@(x) for zeR",

where f(t, ), ¢(x) are given functions defined in § and R" respectively.
Essentially by a similar argument to that given in the proof of the corre-
sponding theorem of paper [1] one can prove the following

THEOREM 3. Let Assumptions I, IT be satisfied. We assume that o (z)
8 c_o'ntinuous on R", f(t, z) is Holder continuous on every compact subset
of S and there are non-negative constants K,, K, such that

p(x)] < K,h(0,2), azeR*, and |f(t,s)<K,h(t,z), (I,2)eS.
Then

[
u(t, o) = [I'(t,2;0, E)p(&)de— [dr [T, 257, O)f(z, £)d&
R® 0 R

8 a solution of the Cauchy problem (4.1). Moreover,

lu(t, o)) < (K; + K t)h(t,z) in 8.
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