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On the extension of holomorphic functions
on a locally convex space
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Abstract. The map between the spaces of holomorphic functions on locally convex spaces
induced by a continuous linear map is investigated. The obtained results allows us to get the s-
nuclearity (resp. the nuclearity) of the space ¢(U) of holomorphic functions on an open subset U
of a quasi-complete dual s-nuclear space (resp. of a quasi-complete dual nuclear space). Certain
extension and lifting theorems for holomorphic maps between locally convex spaces are also
established.

The space of holomorphic functions on an open set in a locally convex
space was investigated by several authors [2], [3], [4]. In Section 1 of this
paper we find conditions for a map between spaces of holomorphic functions
on open sets in locally convex spaces induced by a continuous linear map to
be s-nuclear. Section 2 is devoted to an application of obtained results to the
extension and lifting problem for holomorphic maps between Frechet and
dual Frechet spaces.

Notations and definitions. Let L be a complex locally convex space and
let L' denote the strong dual of L. By #(L) we denote the set of all
absolutely convex neighbourhoods of zero in L. For every U e # (L), let L(U)
denote the completion of L/p(U)~*(0) equipped with the norm p(U), where
p(U) is the Minkowski functional of U, and let n(U) denote the canonical
map from L into L(U). If U, Ve % (L) and V < U, then w(V, U) denotes the
canonical map from L(V) into L(U).

A continuous linear map T from a locally convex space L into a locally
convex space F is called s-nuclear [11] iff for every Ve%(F) there exists
Ue# (L) such that TU < V and the map T(U, V): L(U)— F(V) induced
by T is s-nuclear, ie., there exist sequences {A;} = R, (u)} = L'(U) and
;1 = L(V) such that

aL

sup . gl oll: j=1,2,...} <0, Y A2<o for every p>0

AlZ/‘z;...> j=l



268 Nguyen Van Khue

and
TU, V)u=) Aujuv; for ueL(U).
i=1

A map T is said to be quasi-s-nuclear iff for every Ve #(F) there exists
Ue# (L) such that TU < V and «T(U, V) is s-nuclear for some embedding
a of L(V) into a Banach space B.

Given a locally convex space L, denote by L(K), for any bounded set K
in L, the normed space span K equipped with the norm generated by the
absolutely convex envelope w(K) of K. Let #(L) denote the set of all
absolutely convex bouned sets in L.

Let G be an open subset of L. A subset K of G is called G-precompact iff
K is precompact and K € G, where we write K € G iff there exists Ue % (L)
such that K+U < G.

A complex valued functicn f on G is said to be bc-holomorphic iff

(@) f1G n Ly is holomorphic for every finite dimensional subspace L,
of L,

(b) f is bounded and continuous on all G-precompact subsets of G.

Obviously, if L is quasi-complete, then f is bc-holomorphic iff f is
hypoholomorphic. '

By 0,.(G) we denote the space. of bc-holomorphic functions on G
equipped with the topology of uniform convergence on all G-precompact
subsets of G.

Put

(,(G) = |feC(G): f is bounded on every bounded set K € G},
Cuy(G) ={f: G- C: fis hypoholomorphic],

where ((G) denotes the space of holomorphic functions on G. This space is
endowed with the compact-open topology. The space €,(G) (resp. Cyy(G)) is
equipped with the topology of uniform convergence on all G-bounded sets
(resp. on all compact sets) in G.

1. The spaces (G), (,(G), Cyy(G) and ¢, .(G). Let T be a continuous
linear map from a locally convex space E into a locally convex space F.
Then T induces naturally the continuous linear maps

-~

T ¢(F)— C(E), T,: C,(F)— (,(E)
and
Tm': Oy (F) = Oyy (E), Tb& Ope (F) = Gy (E).

We now prove the following
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THeOREM 1.1. Let T be a continuous linear map from a normed space E
into a normed space F. Then the following conditions are equivalent:

(i) The dual map T': F' - E' is s-nuclear.

(i) If G and G are open sets in E and F, respectively, such that
TwG € G, then the map ’7},: 0,(G) - ©,(G) induced by T|G is s-nuclear.

(iii) T,: ¢, (F)— O,(E) is s-nuclear.

Moreover, if E and F are locally convex spaces and if T satisfies the
condition: ’

For every K ¢ B(E) there exists K € 3(F) such that TK c K and the map
Tx: E(K) - F(K) induced by T is s-nucelar,
then,

(iv) Ty (')E_(G)—»(O,,(G) and T,.: 04.(G) = O,.(G) are quasi-s-nucelar,

where G and G are open sets in E and F, respectively, such that TwG € G.

(v) T: €,.(G) = Cuy(G) is quasi-s-nuclear for all open sets G and G in E
and F, respectively, such that TG c G.

Proof. (i)=(ii). Since T: E— F” is s-nuclear, there exist sequences
{4;} < E’ and {e;} = F” such that

AP < oo  for every p> 0,
=1

J

(1.1) Z llej] < 0,

T,=) Alue; for uek.

Put G, =wTG+B(0,¢3¢), where c¢=dwTG,0G)>0 and B(x,r)
= [yeF”: ||x—y|| <r}. Obviously,

oTG € G, «c W=U/{B(y, d(y, 9G)/3e): yeG}.

Since ry(x, f) = d(x, 3G) = d(x) for fe,(G), where r,(x,f) denotes the
radius of boundedness of f at x, by a lemma of Aron and Berner (see [1], p.
10) there exists a linear extension map 6: 0,(G) — (O(W). This map is given
by the formula

@)x= T TPSO)x=y) for xeBly, doe). yeO,

where P,f(y) denotes the k-th Tavlor coefficient of f at y and T, is the
natural extension map from the space of continuous k-homogeneous poly-
nomials on F into the space of continuous k-homogeneous polynomials on
F”. Observe that 8: 0,(G)— ¢(G,) is continuous. Indeed, let % = (V,: yeG}
be a locally finite open cover of W such that ¥, c B(v, d(y)/3e) for ye G and
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let K be a compact set in G,. By the local finiteness of % without loss of
generality we may assume that K < ¥, for some y,. Hence, for f e 0,(G) and
xe K, we have ’

65 < ¥ ITIIPS ol lIx— ol
k=0

< Y Kk (e/d(yo)) (@0o)/3e) Pooadrore )
k=0

where B(y, r) = B(y, )" F and px denotes the seminorm on ¢, (G) generated
by a G-bopnded set K in G. Put C = Y (k/3)1/k! < co0.
k=0
Then

Pk (6f) < Cpyyo.apoye (f) for fe 04(G).

Since T(K) is compact in G, for all G-bounded sets K in G, it follows that
T((O(G,)) < 0,(G). Thus, by the continuity of 0, it suffices to show that the
map T: €(G,) - 0,(G) is s-nuclear..

Without loss of generality we may assume that {¢;} = B(0, ¢/3¢). Let K

be a G-bounded set in G. Put K = w {e;} +©T(K). Observe that Kis a
compact set in G. We will show that the canonical map

Tx: 0(G)/pk ' (0) > Gy (G)/px ' (0)

induced by T is s-nuclear.
Let p> 0 and let

@=max { ) pk(4), Y llejl} <oo
J=1 j=1
Given an fe0(G,), consider the Taylor expansion of f at zero

fw = Z(P,J)u for ueG,.

Since

P u=3%ni | f(Awi~""'dA

a=2
for ue K, = K/2, we have

(1.2) PR, (Paf) < 277p(f) for n>0.
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By (1.2) we have

(1.3) [Pof(ej,,-.., e )l <(1/n)) Y (2a)"|P, f (e, +...+ ¢ /2a)
G, < <l',)CU, ..... i)
< (2a)|n! pg(f) for all n,jy,...,j,>1.
Setting
ﬁ(--h--«-fn)(") = )'1'1 (u)...).jn(u) for ueG
and ;

Uinjyoin ) = (Puf)ey, 5 ..., &) for fe0(G)),
n,Jjy,--.jn=1, we get the elements belonging to ¢,(G)/px'(0) and
[O(6,)/pz ! (0)], respectively, such that

a0

(T =£O+ T PNT=fO+ T P 4we)

n= n=1

=fO+ Y A @)... 40P .S, ..., ¢)

n,jl,....j"?l
=f(0)+ > Biniy.ooin @ Ui jy.....in ()-
"yjl vvvvv jn>l

On the other hand, by (1.3) we have
2 By sl Wy gpllP < 3 PRy, - PR, (20)/n Y

= 3 (L A @) = 3 @atyny <.
n= n=1

Hence we infer that Ty is s-nuclear.

(i1) = (iii) is trivial. .

(iii) = (i) follows from the relation 7" = P, T|F.

Proof of (iv). (a) First we show that T: 0,(G)— ¢,(G) is quasi-s-
nuclear. Take Ve%(F) such that

j=

(1.4) oTGc G, =wTG+VcG,+V .

Obviously G, € Z(F). Let K be a G-bounded set in G and let K e #(F) such
that T(K) < K and the map Ty: E(K)— F(K) is s-nuclear. Observe that
Kc€E(K)nG and K is bounded in E(K). By (14) we have

f1G, nF(K)e 0,(G, nF(K)) for fe0,(G) and
wT(E(K)nG) € G, nF(K).
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Thus applying implicatibn (1) =(i1) to Ty we get the following gommutative'
diagram '

GolG) ——L— > GG~ FIK)
GG /pP(0) LA GﬁE(h))/p;‘(O)

N A

\ . &G EWKI/ppi0)

in which 7y is s-nuclear, where
Oo(GNE(K)) = {fe(GNE(K)): f is bounded on K},

r is the restriction map, i, iy, @y and wy are canonical maps. Hence T is
quasi-s-nuclear.

(b) In notations of (a), since Ty is s-nuclear, it can be represented by
formula (1.1) with {e;} = F (K) ([11], Theorem 8.5.6). Hence, by the proof of
(1) = (i1), it follows that for each G-precompact set K in G there exists an
absolutely convex set K” in F(K) such that K” is precompact in F(K),

rK" € G nF(K) for some r>1 and

Ti: O5(G N F(K))pi? (0) » €, (G E(K))/px ' (0)
is s-nuclear. By the Taylor expansion at zero of each element f €0, (G) we

infer that f|G, N F(K)e 0,(G, n F(K))/px* (0) for f € 0,.(G). Thus we get the
following commutative diagram

- ﬁmp;;.m)

A.\8)
l(.,,? e
GG/ 10) B,(GAE(K))/p10)

GG ~EK)/p10)

- in'which Ty is s-nuclear. Consequently T: 0,.(G) - 0, (G) is quasi-s-nuclear.
Proof of (v). Let K be a compact set in G. Take Ve% (F) such that

T(K) < -91 (0,+V) < .Ql (0,+2V) < le (0,+3V) < &

for some m, where v; = Tu;, u;e€G, j=1,2,...,m. Put

Gi=GnT '(y+2V), G;=v;+3V and K,=KnT '(v;+7).
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Since G; ~ G,—u;, G, ~ G;—v; =3V and T(G,—u,) < 2V € 3V, applying (iv)
to T;: T|G,: G;—G; we get a commutative diagram

BoclG) ————— ®,.(G))

‘:’K? l ew'q 2'(!
N %
©3,(6;)/pi (0)

in which g T, are quasi-s-nucelar. Hence T is quasi-s-nuclear. The
thearem is proved.

A locally convex space L is called dual s-nuclear (resp. dual nuclear) if L’
is s-nuclear (resp. nuclear).

Since each quasi-s-nuclear map is absolutely summing, it follows that
the product of two quasi-s-nuclear maps is nuclear. On the other hand, since
each nuclear map from a subspace of a Banach space into a Banach space
can be extended to a nuclear map, we infer that the product of three quasi-s--
nuclear maps is s-nuclear. Combining this with Theorem 1.1 ((iv) and (v)) we
get the following

CoroLLARY 1.1. If E is dual s-nuclear, then Cy(E) and O, (E) are s-
nuclear.

CoroLLARY 1.2 [6]. If G is an open set in a quasi-complete s-nuclear
space, then O(G) and Oxy(G) are s-nuclear.

Now assume that E is dual nuclear. Let K € #(E). Since E’ is nuclear,
there exists K e #(E) such that K = K and the canonical map idy: E(K)
— E(K) belongs to class [/2 ([11], p. 142). Thus idy is represented by the
formula

idg (u) = f: Aj(ue, for ueE(K),
j=1

where {1,} = E'(K), {¢;} < E(K) and i (14,0l +liefl) < o ([11], p. 136).

J
Hence, by an argument as in Theorem 1.1, we get the following
CoroLLARY 1.3. If E is dual nuclear, then O,(E) and Oy (E) are nuclear.

CoRrOLLARY 1.4. If G is an open set in a quasi-complete dual nuclear space,
then O(G) and Oyuy(G) are nuclear. '

Remark 1.1. The nuclearity of ¢#(G) has been established by Boland
[3].

THEOREM 1.2. Let T be a continuous linear map from a normed space E

4 —Annalkes Polonici Mathematici XLIIL3
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into a normed space F. Then T': F' - E' is nuclear if and only if T: C,(F)
— (,(G) is nuclear for every open set G in E.

Proof. The necessity of Theorem 1.2 is trivial.

Let T': F' > E’ be nuclear and let G be an open set in E. Since T: E
— F” is nuclear, we have

Tu = Z Aj(uye, for uekE,
j=1
where {4;] and {e;] are sequences in E’ and F”, respectively, such that
] il
Y lAll<oo and  supillefi: j=1,2,..} <1.
j=1

Since there exists a cogtinuous linear extension map ¢, (F) — ¢, (F"”) [1], it
suffices to show that T: O,(F") — O,(G) is nuclear.

Let K be a G-bounded set in G and let a= ) pg(l). Put

ji=1
K = w({6ae;}UTK), K, =K)2.
Let fe(,(F"”). In notations of Theorem 1.1 we have

Pi,(Pf) < 27"pg(f) for n>0
and
|Paf(ej,, .-, &)l <(1/nY) Y (n/3a)"|Pof (€1, +...+¢; ) 3a/n|
(iy <---<ip)C(j1.---.j,.)

< (U/nh(®/3a ) (:) 27"pg (f) < (1/n))(n/3a)"px (f)

p=1

for n > 1. Since Z (n/3)"/n! < 00, by an argument as in Theorem 1.1 it

n=1
follows that Ty: O, (F")/pg*(0) — 0,(G")/px ' (0) is nuclear.
The theorem is proved. '
THEOREM 1.3. Let T be a continuous linear map from a locally convex

space E into a locally convex space F. Then the following conditions are
equivalent :

() T': FF>E' is precompact, ie., for every Ve (E') there exists
Ue % (F') such that T'(U, V): F'(U) > E'(V) is precompact.

(i) If G and G are open sets in E and F, respectively, such that TG € G,
then T: 0,(G) - €,(G) is precompact.

(iii) T: O,(F)—> C,(E) is precompact.

Moreover, T: 0,(G) » Uyy(G) is precompact for all open sets G and G in
E and F, respectively, such that TG = G.

Proof. (ii) = (iii)) = (1) are trivial.
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(i) = (i1). Since L(K) is a subspace of [L'/pg!(0)], where L is a locally
convex space and Ke#(L), it follows that for each K e #(E) there exists
K € #(F) such that T(K) = K and Ty: E(K)— F(K) is precompact. Hence,
by an argument as in Theorem 1.1 (iv), we may assume that E and F are
normed spaces. Let K be a G-bounded set. Since d(TK, 6G) > 0, there exists
a bounded open neighbourhood G, of TK such that G, € G. We now show
that the canonical map 6: (9,,((~})/p‘(;l (0) — O, (GYpx ‘(0) is precompact.
Assume that {f,} is a bounded sequence ‘in (9,,(G)/pg Since TK € G,, it is
easy to see that {f,| TK} is equicontinuous. Hence, by the precompactness of
TK, it follows that {f,T|,} is precompact in (/,(G)/px ' (0). Using the proof
of (i) =(ii) and examining the proof of Theorem 1.1 ((iv), (v)} we get the
precompactness of T: 0,(G) = Ouy(G). A locally convex space L is called
dual Schwartz if L' is a Schwartz space.

The following are an immediate consequence of Theorem 1.3.

CoroLLARY 1.5. If E is a dual Schwartz space, then Oy (E) is a Schwartz
space.

CoRrOLLARY 1.6. If G is an open subset of a quasi-complete dual Schwartz
space. then O(G) and (Cyy(G) are Schwartz spaces.

Let A be an index set. Put C* =[] C;, where C; = C for ie A. We will
ieA
prove the following

THeOREM 14. Let A be infinite and let

K=][]4(), where A(r)="{zeC: |zl <r;}.

ieA
Then the canonical map
n(K, K): Ogy(C"/pg " (0) = Oy (CY/pi * (0)

is s-nuclear for some compact set K in C* containing K if and only if the set
A(K) =tieA: r;> 0} is finite or countable.

Moreover, if A(K) is countable, then n(K, K) is s-nuclear for every
compact set '

=nA(ri+£i)’ Z r;/£;<CD.

ieA ieA(K)

Proof Assume that n(K, K) is s-nuclear for some compact set K
containing K. Since n(K, K) is surjective, @y (C*)/px ' (0) is separable. For
ie A(K) and EeC* put €](§) = &/r;. Obviously, €, O(C*) and px(ej—e)) =1
for i, je A(K), i #j. Hence, by the separability of Oy (C?)/px'(0), we infer
that A(K) is finite or countable.

Now assume that A(K) = {i,, i;, -..}.
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(a) Put
Ko=1]] 4(r), Ko=1]] 4¢rj+e),
Jj=1 j=1

where r; = Tips g =i
By the commutativity of the following diagram

BV ptior —2EK o g te1)/pt0)

T t

&(CAIKU')/ = (0) - @(c.{.}lﬂv 1(0)
0 ”(KOM Px

in which T and i are canonical isomorphisms, it suffices to prove that
(Ko, Ky) is s-nuclear.
Put

V = {ae0(C1®): Pz, (0) < 1}.

Let V° denote the polar of ¥ in [0(C*®)/pz)(0)]. For every n and
eeC(V° write
2x 2n

() = (1/20d)" TT (1+rife) [ ... | 9(60)do,

where © = (@, ..., w), 0, =, +£)e", dd =df,...dd, and 8, (0) = o(w)

n
for 6 O(C*®). Since Y rj/e; < oo, we infer that {y,} is a bounded sequence
Jj=1
of positive Radon measure on V° Hence there exists a net {u, } < {1,}
converging to a positive Radon measure u on V?° in C(V°-topology.
Let o € ¢(C'®). By Liouville theorem it easy to see that there exists n,
such that ae O(C") for n > ny,. Hence by Cauchy integral formula we have

n 2R 2x
lo(2) < j]]l (L+ry/e)/2n) g (j) lo(8,)| d0

for all ze K, and n = ny. Thus

Px,(0) < | lo(w)du

vo
and therefore n(K,, K,) is absolutely summing [11].

(b) For each k>1 put K, = [ 4()+¢)/2%. Similarly as in (a) the
j=1

maps n(Ko, Ky),..., 7(K,_1, K,) are absolutely summing. Combining this
with the relation n(K,, K,) = n(K,, K,)...n(K,, K;) we conclude by
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Theorem 8.2.7 [11], that the map n(K,, K,) belongs to class I for p > 0.
Hence n(K,, Ko) is s-nuclear.

2. Extension and lifting of holomorphic maps. Some theorems on the
extensions of holomorphic maps between Banach spaces have been es-
tablished by Aron and Berner [1]. In [2] Boland proved that if F is a
quotient space of a nuclear Frechet space E, then the restriction map O (E’)
— ¢(F’) is surjective,

In this section we investigate the problems extension and lifting
for holomorphic maps between Frechet and dual Frechet spaces.

THEOREM 2.1. Let J be a continuous linear map from a Frechet space E
onto a Frechet space F and let Q be an open set in P, where P is a Frechet-
Montel space. Then

" (i) If either P or F is nuclear, then the map J: O(Q, E) - (:(R, F)
induced by J is surjective.

(i) If G=KerJ is nuclear, then the map J®,id: 0(Q, EQ,Q)
— ((Q, F®,Q) is surjective for all Frechet space Q.

The proof of Theorem 2.1 is based on the following lemma [10]:

Lemma 2.1. Let E = lim {E,, oF}, and F = lim {Fu 77}, where E, and F,
are Frechet spaces, and let k be a natural number. Assume that for each n there
exists a continuous linear map J, from E, into F, satisfying the conditions:

(Ly) y3J, =J0F for n=m.

(Ly) ImJ,_, o2 Im " * for n> k.

(L3) on™* (Ker J,) is dense in w?=% (Ker J,_,) for n> k.

Then the map J = li£n J,: E—F is surjective.

Proof of Theorem 2.1. Since P is Frechet-Montel, P’ is a k-space
[7]). Hence €(R2, Q) is Frechet for every Frechet space Q.

(i) Let either P or F be nuclear. Then by Corollary 1.4 either 0(f2) or F

is nuclear. This yields the surjectivity of the map
J: 0(R, E) = Hom (E,, 0(2)) » Hom (F., 0()) = 0(@2, F),

where E, denotes the space E' equipped with the compact-open topology [S].

(ii) Let G = Ker J be nuclear and {U,} a decreasing basis of absolutely

convex neighbourhoods of zero in E such that the canonical map 8;: G,
-1(0) is nuclear for every n> m.

= g4 0= Gy

Since J is open, {JU,} forms a decreasing basis of neighbourhoods of
zero in F. By J, we denote the continuous linear map from E, = E(U,) onto
F,=F(JU,) induced by J. Then

0(Q, E®,Q) =lim 0(Q, E,®,0) and 0(Q, F®,0)=lim 0(®, F,®,0).
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Thus in order to prove that J®,id is surjective it suffices to show that the

maps @ satisfy the conditions of Lemma 2.1.

(L,) is trivial

(L,) Let ge(Q, F,,®,.0Q). Since 8*,,: G,., -G, is nuclear, by the
Hahn-Banach theorem it can be extended to a continuous linear map
h: E.., »G,. For each veF,,, put dv =}, ,u—hu, where u<E,,,,
J..+.u = v. Obviously d is continuous linear. Hence, setting f = (d®, id)g, we
get an fe0(2, E,®, Q) such that (J,®,id) f = (w(JU,,,, JU)R,id)g.

(L,) Suppose we are given a g€ (*(Q, G,®,0), an ¢ > 0, a compact set
K in Q and a continuous seminorm g on Q. Since €} is nuclear and Im 07 is
dense in G,, for n > m, it follows that there exists a commutative diagram

Gpy > G, - G"-3

0:01 0:-3
I b I

! 2 - ! " 0

in which y is compact and Im 6 is dense in Im y. Let {¢;} be the canonical

basis of I'. By the compactness of {ye;} there exists a bounded set {x;} in /!
such that

ly0x;—vejll <& for j=1.
For each Eel' put

Then h: I' > I' is continuous linear and

167+ 3ahb — 0,7 3| = llcyb0y.. 1ahb — cybll = |lcyOhb — cybl| < elic||11bl].

- n N
Putting f = (ahb®,id)g we get an fe((RQ, G,,,;®,Q) = Ker (J,,,®,id)
such that
SUp g, (023 1f (W)= 077 g (w) < &licl| |1bl] sup g, (g @),
where §, denotes the seminorm on G,®,Q induced by g.

Hence condition (L;) is fulfilled. The theorem is proved.

In [8] Gejler has proved that a Frechet space P is finite dimensional if
and only if for every continuous linear map J from a Frechet space E onto a
Frechet space F and for all ge Hom(P, F) there exists an f e Hom(P, E) such
that Jf = g. Combining this with Theorem 2.1 we get the following

THEOREM 2.2. A Frechet space P is finite dimensional if and only if,
whenever E, F are Frechet spaces and J: E—F is a continuous linear
 surjection, then J: €:(Q, E) - (2, F) is surjective for every open set Q in P.
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THEOREM 2.3. Let G be a closed subspace of a Frechet space E. Then
there exists a continuous linear map 0 from E into G" such that 0| G =id if
and only if there exists a sequentially continuous linear extension
map Tp.: O,(G, F') - O,(E, F') for all locally convex space F, where F' is
quasi-complete.

We need the following

LEMMA 2.2. Let L be a locally convex space and let Be #(L). Then 2B is
o(L", L')-dense in B®.

Proof. Since L(B) is a normed space, B is o(L(B)", L(B))-dense in the
unit ball U of L(B)". On the other hand, since ig(2U) = B™, where iy denotes
the canonical embedding of L(B) into L, we infer that 2B is ¢(L", L')-dense
in B*.

LEMMA 2.3. Let E be a Frechet space and let L be a locally convex space.
Let 2?,(E, L'} denote the space of continuous n-homogeneous polynomials on E

with values in L'. Then there is a sequentially continuous linear extension map
e,: ?,(E, L) >2,(E", L) such that

sup {[v6, f (uy, ..., u))|: veD, u'e B*} < ((2n)"/n!)sup {|vf (u)|: veD, ueB}

for all bounded sets D and B in L and E, respectively.

Proof. Let fe?,(E,L) and let f: E*=Ex...xE - L' denote the
n-linear map associated with f. Define a continuous n-linear map f*:
E'xE" ' > L by

fl (ull'a cey un) (U) = u'l’ (./iuz,....un) (U)),

where fu, uy? E =L Sy upy@)v = f(uy, ..., u)v. Then by Lemma 2.2
we have

sup {|f 1 (u}, uy, ..., u)vl: veD, uyeB* u,, ..., u,eB}
= sup {[u] (fuu,...up (W))|: vED, 4 €B=, uy, ..., u,e B}
< sup {|u; (fuy,...up )| : €D, 4, €2B, us, ..., u,c B}
=2sup{lf(uy,..., u)v|: veD, uy,..., uy,€B}.
Similarly we define a continuous n-linear map f2: E"xE"xE"" %2> L’ by
SRy, w3, ug, ooy ) 0 = U3 S g,y (0)-
By Lemma 2.2 we have
sup [ f2(uy, uy; us, ..., u)v|: veDuy, ujeB*, u,, ..., u,€B}
=sup {[usf (uy, us, ..., u)v|: veD, u;, uyeB™, us, ..., u,e B}
< sup {[u2fiuy,..uy W) : vED, uy, u; €2B, uy, ..., u,e B}
=2Zsup{|f(u,,....,u)v|l: veD, uy, ..., u,eB}.
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Continuing this process, we get a continuous n-linear map 6,.f: E”" - L’
such that

(21)  sup{l(6.f)uy,...,u)v}: veD, uy,..., u e B®}
< 2"sup{lf(uy,...,u)v|: veD,u,,..., u,eB}

< (2"n"/n!) sup {|f (W) v|: veb, ueB}.

Obviously 6,: #,(E,L)->?,(E", L") is linear and 0,f|E = f for all
fe?,(E, L). By (21) and in view of the fact that each bounded countable
set in E” is equicontinuous [12], 6, is sequentially continuous.

Proof of Theorem 23. Let 8: E—~ G” be a continuous linear map
such that 6)G =id and let § denote the continuous linear map from
0,(G", F) into O,(E, F) induced by 6. Then &f|G=f|G for all
fe0,(G", F). Hence it suffices to show that there exists a sequentially
continuous linear map y: O(G, F') = 0,(G”, F') such that yf|G = f for
fe0,(G, F').

Let fe0,(G, F’). Consider the Taylor expansion of f at zero

fW=73 PJ@W for ueG.
n=0

Let Be #(G). Since f|G(B)e 0,(G(B), F') we have

(im sup 8/po,g Pof) ' = o
for De #(F), where

Pw.5(Pof) = sup {{(P.fu)v|: veD, ueB}.

Hence, by Lemma 2.3,

22 (lim sup &/ pp,s) OnPuf ) '=oo0.

Thus the series ). 6,P.f converges to an element yf € ¢, (G”, F"). Obviously

VG = f for f€0,(G, F).

Let {f"} =0 in 0,(G, F’) and let B" e B(G"). Since G is Frechet, every
bounded countable set in G” is equicontinuous ([11], Corollary 1, p. 153),
and we may assume that B” = B™ for some B e B(G). Then for all De B(F)
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we have

sup {| nzo 0P f"(u")v|: veD, u”" B~}

au

< Y sup{lO,Pf"(u")|: veD, u" e B~} < Z (24*/k 1) po. 3y (PLf ™
k=0

s i ((k/3)k/k!)l’w.3m(f")—>0.

k=0
Hence 7y is sequentially continuous.
The converse statement is trivial.
If G’ is bornological, then each bounded set in G” is equncontmuous
[12]; thus the following is an immediate consequence of Theorem 2.3.

CoOROLLARY 2.1. Let G be a closed subspace of a Frechet space E such that
G’ is bornological. Then the following are equivalent:

(1) There exists a continuous linear map 0: E — G” such that 0| G = id.

(i) There exists a continuous linear extension map B: G' - E'.

(i11) There exists a continuous linear extension map T: (,(G) — C,(E).

(iv) There exists a continuous linear extension map Tp.: G,(G, F')
- 0, (G", F') for any locally convex space F such that F' is quasi-complete.

CoROLLARY 2.2. Let S be a o-compact space and let E be a Frechet space
containing C(S) as a subspace. Then for every locally convex space F
with F' quasi-complete there exists a continuous linear extension map
Tr-: O,(C(S), F')— €y (E, F').

Proof. By Corollary 2.1 it suffices to show that there exists a con-
tinuous linear map 6: E— C(S)” such that 0|C(S)=id and C(s) i
bornological.

We write § = U S,., where S, cInt §,,, and S, are compact. Then
n=1

C(S) = U C(Sp) and r7,, is imbedding for n> 1, where r7,,: C(S,+,)

-C (S,,) denote the restriction map. For each n> 1 define a continuous
linear map Pp.y: C(S,+,) > C(S,) by Ppyypu=p|S,. Then Ppyyriy, =id.
Hence P.,, is a continuous linear map from C(S,)” into C(S,+,)” such that
. P =id. Combining this with the relation C(S)” =limC(S,)", we see

that C(S)' = H C(S,)". Since C(S,)” is a PA,space for n> 1, [9], there

n=1
exists a continuous linear map 0: E — C(S)” which extends the canonical

embedding C(S) — C(S)". Since C(S,) is a subspace of C(S,.,) and since
each linear map from C(S) into a locally convex space which is continuous
on all bounded subsets of C(S) is continuous [12], it follows that C(S) is
bornological.
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