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Convex functions of higher orders
in Euclidean spaces
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1. Throughout this paper R™ denotes the space of all points a =
(@yy @3y ..., Gy,), Where @, are arbitrary real numbers ({ =1,2,..., m).
For arbitrary ae R', be R™ and a set A = R™ we write

0A+d = {5: @ = aa+b, ac A}.

The symbol m(4) denotes the m-dimensional Lebesgue measure of
the set A < R™ and, |a— b| the Euclidean distance between points a, be B™.
Further, let

R™ £ {he R™\ {0}: the first non-zero coordinate of & is positive}.

Thus we have RTU(—R})U{0} = B™ and R} n(—R7) =0.
DzrinirioN 1. Let f be a real-valued function defined on an open
convex set 2 —« R™. We say that f is convex of n-th order iff

(1) A f (@) =0 ()

holds for all #e 2 and he R’} such that o+ihe? for i=1,2,...,0+4+1.

This definition requires some words of comment, Namely, in the case
of m =1, it reduces to the well-known definition of a convex function
of n-th order in a single variable. Moreover, the choice of the set R} as
the set of admissible values on % is inessential in the case of # odd. Ib
fact, a simple calculation shows that

A" () = (=L)"Y (), ¥y = a—(n+1)h
and thus
A" f (@) = A3 f(y)
for n odd.

M) 207 (@) & fl); AbHif(z) 2 Akf 4+ h)— ALf ().
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However, if » is an even number, then A f(w) = — 4%+ f(y), and
letting b vary in the whole R™, we shall reduce. the class of functions
congidered to the class of polynomial functions of n-th order, i.e. functions
fulfilling the condition A3*'f(w) = 0. This is the reason why the set RT
appears in Definition 1.

It is also easily seen that one can replace K3 by any other set 4 — R™
such that Au(— A)U{0} = B™ and AN(—A4) =@. Anyhow, R7 seecms
to be the most natural set of such form.

One can also ask if there exist, for even », convex functions of n-th
order which are not polynomial functions. It is not difficult to construct
a certain class of such functions. For, let

f(a’u Tay --'awm) =f1(m1)+f2(m2)+ one "Ffm(wm)y

where f;: R'— R' for i =1,2,...,m, f, is convex of n-th order and not
polynomial, and f,, fs, ..., f» are arbitrary polynomial functions of n-th
order in a single variable,

For example, in the case of m = 2, we can take

Jlwy, 2y) = "1 4-0;.
This function is convex of order 2 and not polynomial, since
A?hl.hz)f(a’n @,) = Ail 6“1+ Aizwg =" (e"—1) >0

for (hy, he) = he RY, and A4, 4, (@1, 5) > 0 whenever k&, > 0.

Popoviciu [7], in the second part of his paper, is also concerned with
the problem of a generalization of the nofion of convex function of higher
order to the case of m = 2. In this case our definition is equivalent to
the second of the two definitions considered in [7]; however, in [7] the
author restricts himself to n odd.

The purpose of the present paper is to prove that a convex funection
of n-th order (in the sense of Definition 1) bounded (bilaterally) on a set
T c 2 such that the suitable set H*(T) (defined in section B) is of positive
Lebesgue measure, or of the second category with the Baire property,
is continuous in 2. An analogous result has earlier been proved by Cie-
sielski [1] in the case of ¥ = 0, m = 1. The present note yields simul-
taneously a new proof of Z. Ciesielski’s theorem.

2. Suppose that points a = (a,, a,, ..., @,), b = (by, bs, ..., b,,), @ 5% b,
belong to 2.
DEFINITION 2. We say that a < b iff (b—a)e RT.

Remark 1. If points a,®,be 9, a < b, are collinear and pairwise
different, then x lies between a and b iff o < 2 < b.

The proof is obvious.
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In the sequel the notion of divided difference investigated by T. Po-
poviciu will play an important part. But it must be slightly modified,
since 'we are concerned with m > 1.

DEFINITION 3. Let points #,, %, ..., %;,,¢ @ be collinear and such
that o; < @y < ... <my;. We may assign to them linear coordinates
0 = A; < A < ... < A4y, respectively, where A, = |o;—a,) fori =1,2, ...

o, k+1. We put
df

[ f1 = f(a),

- Ay Ay ooy Apgas F1— [Py Ay ovy P
[215 Agy ooy g3 £ at Doy dyy oy Bpgas f1— [y Ay -y mf].

2k+‘1_ 11
We may write [4;, 45, ..., 4.3; f] in the form

U(Ayy Agy oney 2k+1;f)
V(A Aay eery Apy1) ’

where
12 AT f(e)
Uhyy day ooy s ) = -
1 A Mei1 flas)
and
1 A M1 gk
V(A Aayeeey Aypr) = 1,
1 Ak+1 A’I:;} 1llz+1

Following Popoviciu, let us note that

LeMMA 1. If collinear points @ < @, < ...<®,,,62 < R™ are so
chosen that g, By, ..., D,y divide rationally the segment %,; Tn,, (i.0. the
segment 5 By, 18 commensurable with my; &, g for k =1,2,...,n+1)
and if f: @ — R' is convew of n-th order, then for their linear coordinates
At =1,2,...,n+2) the inequality

[y gy evey dny23 F122 0

holds.

The proof is formally the same as in [7].

Let us fix points z, y¢ 2, < y, and pass through them the straight
line I. Turther, let us take points o, < 2y < ... < @elN 2, 0, <o, in
such a way that @,,%,...,,,% divide rationally the segment ;.
Let the suitable linear coordinates be 0 =4, < <... <2, <A<,
respectively (1 and » being the coordinates of # and % respectively). By
Lemma 1 we have

Uy Aoy ooy Ay A, %5 £) 20
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(since V(Ayy .evy Any A, %) >0 in view of the fact that the sequence
My +eey Any A, # i strictly increasing).

Expanding this determinant with respect to the last column, we
obtain:

n

DU @) V(A ooy Doty Aigar ooy Any By #)—
i=1
—F(@) V(Agy day ooy Ay %) FF @) Vs hay ey Ay ) >0

(we assume here that 4,,, = 4). Thus
V(A -y lm A)
V(A .. %)

— V(lu oy M1y }"t+l7 crny Ay %)
- 1yt
Z( 1y fa V(A eooydyy %)

(2)  fl@)<f(y) -+

and
V(Agy oeoy dyy %)
@) 0> o) R
_2 n—if( V(Agyoory Apyy Appyy ooey Ay %)
V(A ooy dny 4) '

teal

Inequalities (2) and (3) will be useful in the proof of the following

LeMumA 2. Let f: @ — R' ba a convew funotion of n-th order. If there
exists @ point wye D such that f is bounded in a neighbourhood of x,, then
it 18 also bounded in a neighbourhood of every point zye D.

Proof. Let K (v, g) denote the ball with the center » and radius g
and assume that f is bounded on a ball K = K (v, n).

Let us take an arbitrary point z,¢ 2\ K (»,, n) and pass the straight
line I through », and 2,. Suppose that @, < 2, (in the case of 2z, < w, the
proof is analogous). Since 2 is open, we can find a point pe 21 such that
By < P.

Let us consider & cone § with the vertex at p and such that K (w,, 47)
is inscribed in 8. We shall show that f is bounded on the ball K (z,, u)
centered at z, and inseribed in S.

In fact, let us take an arbitrary point z e I (2,, u) and pass the straight
line I’ through 2 and p. The segment K N1’ is of a length greater than
V3. Now, we choose points #, < @, < ... < &,¢ N1 such that m,, @y, ...,

%, 2 divide rationally the segment #,; p and

. 1 ~ .
(4) mm|w¢+1*w¢|>—2;7)l/3 for ¢ =1,2,...,n—1.
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We put # =2, y = p in (2). Then f(s,;) vary in a bounded set, since f
is bounded on K, and the Vandermonde determinants occurring in (2)
are bounded above and below by positive constants independent of
(in virtue of (4)). Hence f is bounded above on K (z,, u).

Similarly, teking points @, s, ..., #,.,¢ KN such that w,, g, ...,
eevy Wy, divide rationally the segment w—l;_z and fulfil condition (4)
(1 =1,2,...,n), and making use of relation (3) with y =z and » = a,.,,
we infer that fis bounded below on I (7, x). Thus fis bounded (bilaterally)
on K (2, u).

LeMMA 8. Let f: 2 — R* be o oonvew function of n-th order. If f is
bounded in a neighbourhood of a point m,e D, then it is continuous at w,.

Proof. It is enough to show that

(5) lim f(z) = lm (@) = f(aq).
z<ay zy<s

Let f be bounded on a ball K = K (w,,n). We take an arbitrary
point e K, # < w,, and pass the straight line I through » and »,. Next,
we choose two sets of points belonging to Knli:

1° g <®w<..<w®, such that ¢, < and @, ..., %, 2 divide
rationally the segment @,; w,. We assign to the points oy, @,, ..., #,, %, @,
the linear coordinates Ay, 4z, «..y-4,, 4, 4y, respectively;

2° 0 <y <..<m, <, such that a, <o <w, <w,,, and
By, Tyy +vy By, B, W, divide rationally the segment ;w,,,. We assign
to the points my, @, ..., @p_y, @, By, T, the linear coordinaves A, 4, ...,

voy A1y Ay Agy Anyy, TESDECtivEly.

One can assume that #, = #;, which implies that A = A" and 4, = 4;.
It is obvious that # — @, is equivalent to 4 - 4,. Moreover, by Lemma 1,

U(Aiy Aay ey Any Ay 403 ) 20

and hence (compare (2)), writing 1 as 4,.,;, we have

V }' ’127"';2-,-”2.
(6) f(mO)—f(m) >f(w°) . [1_ V((ZIIJ 12, ey An) 2-0))] B

n
T i f(=) V(Alv---711—17}*i+1:"'7}'1”2'710)'
I N N (TS Wy hy X

Similarly, since

(A, MR }*;»,-1: AyAyy Aniri ) = 0.



298 R. Ger

we have (writing 1 as 4,)

V(dyAayoony dycry Ay Aggn) ]
7 @) —J (&) < J{@p) 1— Y] 7 7 +
(M Jlo)=flm) <t °’[ VY O R W
n—~—1

o J@) VU ey My By ooy s Ay By )
do—2) 3 (=1 Ry Fuen oo oy +
R D) (-1t AT A

V(Ai, A’;’ e A’:’b-—l’ 2” 2’0)
(Aay Agy vvvs Ansy Agy Anyr)

Ag in proof of Lemma 2, we may (by a convenient choice of the
points @; and ;) make the Vandermonde determinants occurring in (6)
and (7) bounded away from zero and infinity. Moreover, V(4,, ..., 4,1,
Aigryeeey huy Ay do) and V(A ..ey Ag, Zé+1’ eovy A1y Ay Agy Ayy1) contain the
factor (4,—A). Consequently, the expressions under the )’ sign in (6)
and (7) remain bounded, and hence

lim [f(@)—f(ze)] = 0.

W"’wo
< ED

+f(wu+1) ' v

Interchanging the roles of # and z, (1 and 4,), we conclude by the
same argument that

m [f(z,)—f(@)] =0,

E—+Ty
xo <z

which completes the proof.
Lemma 2 and Lemma 3 imply the following

TEEOREM 1. If f: 2 - R' is conven of n-th order and if there ewists
a ball K (wy, n) =« 2 on which f is bounded, then f is continuous in 2.

3. For a given set B < R™, let B* denote the set of all points of
density of B. The following theorem, due to J. H. B, Kemperman, will
be used:

THEOREM 2. For fived sets By, B,, ..., B, = R™ with a positive Lebesgue
measure, and for arbitrary poinis bye B, 1 = 1,2, ..., k, there exist positive
numbers 6 and ¢ sueh thal |o;—b| < 8, T =1,2,..., %k implies
m((By— #1) M By— )N ... N (By—a,)) > ¢ (see [3]).

A similar result (in a somewhat stronger form) was also obtained
by S. Kurepa ([5], Lemma 1).

An analogous theorem may be proved for sets of the second category
with the Baire property. At first let us note that if a set B < R™ has the
Baire property and is of the second category, then there exist points
be B and a x>0 such that BNK (b, u) is residunal in K (b, u). Let B**
denote the set of all points b with the above property.
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We say that a set B « R™ is of the second category at a point b iff
for every neighbourhood U, of b the set U,n B is of the second category.
The set of all points at which B is of the second category will be denoted
by D(B). The properties of the operation D may be found e.g. in [4].

Now, we have the following

THEOREM 3. For fived sets B,, B,, ..., B, = R™ of the second category
with the Baive property, and for arbitrary poimis bye BiY, i =1,2,...,k,
there exisis a positive number & such that |m,—b;) < 6, i =1,2,...,F,
implies D((By— ;) N(By— )N ... N(By—m)) # D.

Proof. 0e (B;—b)** for¢ =1, 2, ..., k. Thus, for ¢ fixed, there exists
a ball K; = K (0, &), e, > 0, such that K;\(B;—b;) is of the first category.
Let K = I{(0,¢) be the smallest of the balls K;, ¢« =1,2,...,k We
put 8 = e/2k.

Let us take arbitrary z; such that |o;—b;| < 6 = ¢/2k. We write

di=b.;—w.“ G‘l =K(’\(Bi—bi), ’?;'“—"1,2,-..,’5.
By hypothesis, C; is residual in K and hence the set B, = C;+d, is
residual in K+ d;. It is easily seen that
(8) E%(: Iﬁ——ah.

Let us put P; = Kn(E+d,) and Q; = E\(K+d;). We have P,ug),
=K for ¢ =1,2,..., k. Thus, for ¢ fixed,

ENE; = (PNEHU(QNE).

Since P,\E; is of the first category, we have
D(ENE;) = D(Q\E;) = D(Q) = Q;-
Hence
ko
(9) KN\ D(K\E;) +0.

i=1
On the other hand,

P k
K = (Kn M E,;) v J (K\E;),
=l =l
and so
_ k K
K =DK) = D(Kn N Ei)u U D (EN\L).

i=1 i=1

Thus, by (8)

. : k
B\U) D(ENE,) < D(EA () B) = D(() (Bi—a),
i=1 =

i=1 3

and in view of (9) we obtain our assertion.
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COROLLARY 1. Let T < R™ be of positive Lebesgue measure or of the
seoond oategory with the Baire property. If 0eT* resp. 0<T*™, then there
exists a positive number 8 > 0 such that for a fived positive integer n and
for every oy, G4y ..., 0pyy bélonging to K (0, J) we have

1 1
(10) (-—mT-I-GMl)f\(—;-’l’-l-%)ﬁmﬁ(—-’l’—l-%)ﬁ

n+1

4, For a set 7 < R™ and a positive integer n fixed, we define the get
H(T) as follows:

N(T—oa)N... 0(7];- T—an) n(—l— T—cr,m) # 0.

H(T)Z {nc B™: there exists an he R™ such that o—ih, a+ihe T,
for ¢ =1,2,...,n+1}.
Evidently T' « H(T) and, if T is contained in & convex set 2, then
so is also H(T). -

THEOREM 4. If T' = R™ is of positive Lebesgue measure or of the sedond
category with the Baire property, then there exist a point xqe T and a number
8 >0 such that K (w,, 6) s contained in H(T).

Proof. Without loss of generality we can assume that 0eT* (or
0e T™*, respectively). Since the hypotheses of Corollary 1 are fulfilled, we
put o; = (1)i)2z for ¢ = 41, +2,..., 4 (n+1) and for an arbitrarily fixed
point 2z of (0, 8). Thus

il i=l

n+l 1 1 /] 1
and so there exists an he B™ such that

1 1 L 1
he —— T+ —2 and he—-T——2 fori=1,2,...,n4+1,
) ) ) )
i.e.
z—theT and 24theT fori=1,2,...,0}+1,

which means that z¢ H(T). This completes the proof.

THEOREM 5. If f: 2 —~ R' is convex of n-th order, and if f is bounded
on a set T < D, then it is also bounded on a set H (T).
Proof. By (1)

41

(11) 2, (=1 ("j 1)f(m+jh) >0

j=0

for all we Z and heRT such that o—ih, 8+ihe D, 4 =1,2,...,n+1.
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Let us take an arbitrary #< H(T) and suppose that [f(t)| < M for
teT. There exists an he R™ such that o+iheT for ¢ =1,2,..., n}+1.
If » =0, then this means that weT, and thus |f(@)|< M. If b %0,
then, replacing if necessary h by —h, we may assume that heR™.
Now, we must distinguish two cases.

1° n is even. We have

n+41

1
F@) < Y (—aymi (’”:’ ) f(@+ih),

{=1

and putting »—h in the place of », we get

nt1 1
(=)

By a simple chlculation, from the fact that |f(»+ih)|< M for
i=-—1,1,2,...,n, we obtain

f(@) < (@™ —1)M.
2° n is odd. We have
n<4-1 ) 1
flo)= 3 (=1 ("J: )f(w+ih)

=1
and.

fw) <

1 n+1 o n-+1 . h B
L i-z:(*—l) ( ; )f(m-l-(@—l) ) +Ff(@—h)t,

whence, in view of s+ the T for ¢ = —1,1,...,n, we have also

If (@)l < @"*'—1)M,
which ends the proof.
5. We define the iterates of the operation H:

o dr, BT EHEHNT), k=0,1,2,..

From Theorems 1, 4 and 5 we obtain the following theorem, which
is the main result of the present paper.

THEOREM 6. Leat f be a real-valued function, convex of n-th order, defined
on an open conwven domain P = R™. Suppose that there exist a positive integer
k and a set T = D such that H*(T) is of positive Lebesgue measure, or of the
second category with the Baire property. If f is bounded on T, then
f 4s continuous in 2.
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Proof. In fact, in view of Theorem B, f is also bounded on H*+*(T),
Moreover, Theorem 4 implies (according to our hypothesis on H*(T))
that H*(T) contains a ball, Now, our assertion results from Theorem 1.

In the case of &1 = 0 and m = 1 Theorem 6 was proved by Oiesielgki
[1]. However, our proof is different.

It follows from S. Kurepa’s theorem (see [6]) that a function f ful-
filling condition (1) and bounded on a set of positive Lebesgue measure
is also bounded on a certain ball (the author makes uge of this result
in order to prove Z. Ciesielski’s theorem. once more). Our proof of this
fact is obtained. by unsing a different method, which permits us to give
a unified proof for sets of positive Lebesgue measure as well as for sets
of the gecond category with the Baire property. On the other hand, a gen-
eralization of Ciesielski’s theorem (m =1) consisting in replacing the set T
by H*(T) is essential. A snitable example may be found in [2].
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