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Extension of separately holomorphic functions defined in non-open
sets in the infinite dimensional case

by Lubwik M. Druzkowski (Krakow)

Abstract, The main result of this paper is the following generalization of the Siciak
theorem on the extension of separately holomorphic functions. Let E, be a real topological
vector space, let E, denote the complexification of E,, let ¥, be open in E,, let U, be an open
neighbourhood of V, in E, and further let X := (V, xU,) U(U, x V,) be a cross in E, xE,, k
= I, 2. Then there exists an open neighbourhood U of V; x V¥, in E, x E, such that

1° every separately G-holomorphic function in X is continuable to a G-holomorphic function
in U (U=E xE,ifU,=E, k=12;

2° if E,, E, are metrizable and E, x E, is a Baire space (or E, x E, is a Baire space and the
restriction of function fto V; x V, is continuous), then every separately holomorphic function in X is
continuable to a holomorphic function in U.

1. Introduction. The aim of this paper is to present a generalization of
the Siciak theorem on the extension of separately analytic functions defined
in a cross-set in C" ([6]) to the case when the cross lies in the Cartesian
product of infinite dimensional Hausdorff topological vector spaces (t.v.s.)
over the field C.

In the sequel K denotes either the field of complex numbers C or the
field of real numbers R and the index k is equal either 1 or 2. Let E, E, be
t.vs. over K, let N(E) denote the set of all balanced and absorbing
neighbourhoods of 0 in E ([5]) and let E’ denote the vector space of all
continuous linear forms of E into the field K. If E is a t.vs. over R, then E
:= E+iE endowed with the product-topology from E xE, denotes the

= ExE,.

A mlapping f E—>E, is called a homogeneous polynomial of degree n iff
there exists an n-linear symmetrical mapping f: E"— E, such that f(x)
=f(x,..., x), xeE.

Let us denote by ¥ (E, E,) the vs. of all continuous functions of E into
E, and by Q"(E, E,) the v.s. of all homogeneous polynomials of E into E, of
degree n. We put P"(E,E,) := Q"(E,E\)n%(E, E,) and P°(E,E,)
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r= Q (E, Ey) : . If E is a tvs. over R, feQ"(E, E,), then f(x+iy)
= Z ()f(x X, Yo -on Y x+iyeE. The function f is called the

s=0 n—s
complexification of the homogeneous polynomial f. Obviously, feQ"(E, E)
and feP"(E, E,) if feP"(E, E,).

We say that a locally convex space (shortly lcs) F over K is
sequentially-complete if for every Cauchy sequence |x,, neN! < F there
exists an element xeF such that x,— x. (A sequence [x,, ne N} is called
Cauchy iff for every ge I'(F), q(x,,—x,) — 0 as m, n = xc, where I' (F) denotes
the family of seminorms in F determining the topology of F.) If F is a s-c.
lcs. (i.e, F is a sequentialy complete locally convex space) over R, then its

complexification F is also a s-c. lcs.

DeriniTiON 1. A function f: U — E, is called G-analytic in an open subser
Uof E iff for every xeU there exists a sequence f,€ Q"(E, E,) such that

7.

S(x+h = Z

for all h in a neighbourhood of OeE.

We write feGA(U, E;} when K =R (feGA(U) if E, = R) or
feGH((U, E;) when K = C (feGH(U) if E; = ().

DeFiniTioN 2. A function f: U — E, is called analytic in U iff f is
continuous and for every point xe E there exists a sequence f,e P"(E, E,)
such that

flx+h) = Z Ja(h)

for all h in a neighbourhood of OeE.

We write feGA(U,E;) when K =R (feGAU) if E;, = R) or
feH(U, E,) when K = C (feH(U) if E;, = ().

DerFiniTiON 3. A function f: U — E, is called weakly-analytic (weakly-G-
analytic) iff for every ue E; the lunction uo f is analytic (G-analytic).

We write f e WA(U, E,) when K = Ror feWH(U, E,) when K = C.

Remark. The above definitions have the same meaning as in [2]. In the
case where E is a twvs. over C we usually prefer the term “holomorphic”
(respectively G-holomorphic, weakly-holomorphic) in place of the term
“analytic”.

DeriNiTION 4. Let E, be the complexification of real t.v.s. E;, let ¥, be an

open subset of E;, let U, be an open subset of E, and further let ¥, be
contained in U,. Then the set
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X =WxUjjuU, xV)

is said to be a cross in the space E, x E,.

DEFINITION 5. Let X be a cross in E, xE, and let F be a s-c. Lcs. We
introduce the notion of the family of separately G-holomorphic (respectively
holomorphic) functions defined in X:

GH(X,F):='f: X > F: () VxeV, f(x, )eGH(U,, F),
(i) VyeV, f(, y)eGH(U,, F)},
H(X,F) := {f: X>F; () VxeV, f(x, )€GH(U,, F),
(i) VyeVy f(, »eH(U,, F)}.

The main result of this paper is the following:

THEOREM. For every cross X there exists an open subset U of E, x E,
with the following properties:

1° VixV, =« U.

2 For any feGH(X, F) there exists exactly one function f e GH(U, F)
such that: f=f in UnX, for every qel(F), sup{qo f(2): ze U}
< supligo f(z): ze X}.

3 If X := (Vy; x E;) U(E, x V), then U can be chosen as the whole of
E,xE,, ie., every function fe GH(X, F) can be uniquely continued to a G-
entire function f e GH(E, x E,, F).

4 If E, x E, is a Baire space, f e GH(X, F) and f is continuous in V, x V,,
then fe H(U, F) (f = fin UnX).

5° If E, x E, is a Baire space, E,, E, are metrizable and f e H(X, F), then
feHWU,F) (f = fin UnX).

2. Some elementary properties of analytic functions in topological vector
spaces. In the sequel F will denote a s-c. l.c.s. over K and U will be an open
subset of a tvs. E over K.

DeFiNiTION 6. We say that a function f: U — F has the p-th Gateaux
differential at a point xpe U iff:

1° For every he E the mapping

Ju: D3t — f(xpo+theF,

defined in a neighbourhood D of 0e K, has the p-th derivative at 0,
2° the mapping

d(
(5iof: Eah—»Ff(xo-Hh) eF

=0
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is a homogeneous polynomial of degree [, / = 1, ..., p. The polynomial 6} f
is called the I[-th G-differential at x,.
We write feG?(U, F), if f has the p-th G-differential at every point

xq€ U.

LemMma 1 (Proposition 5.5 in [2], p. 93).

() fe GH(U, F) iff for every point xe U there exists non-empty Ve N (E)
such that for every affine line passing trough x

fan(x+V)EH(Lﬁ(x+ V), F)§

(ii) feGH(U, F) iff f is weakly G-holomorphic in U;
(i) If fe GH(U, F), then fe G*(U, F) and

Sle+h) = Y oif(h)
n=0

for he W, where W is the maximal balanced neighbourhood of 0€E such that
x+W < U.

Lemma 2 (Theorem 6.1 in [2], p. 97, and Theorem 6.3 in [2], p. 98).

() feH(U, F) iff feGH(U, F) and f is continuous,

(i) If E is metrizable, then: fe H(U, F) iff fe WH(U, F);

(i) If E is a Baire space and U is connected, then: fe H(U, F) iff
feGH(U, F) and for every seminorm qe I (F) there exists an open and non-
empty subset W < U such that go f is bounded in W.

LemMmA 3 (Proposition 6.6 in [2], p. 102). Let U be an open connected
subset of the complexification E of a tws. E over R. If feGH(U, F) (or
feH(U, F) and f(x) = 0 for x belonging to an open non-empty subset of
EnU, then f = 0.

“As a simple corollary from Corollary 5.1 ([2]), Theorem 5 ([1]),
Proposition 5.2.1° ([2]), Proposition 6a ([1]) and Lemma 5 below we get:

LemMa 4. If U is an open subset of a t.v.s E which is a Baire space over R
and fe€(U, F)n GA(U, F), then there exist an open subset Uof E and a
holomorphic function f e H(U, F) such that f = fin U < U.

Lemma 5 (a version of the Vitali theorem). Assume that:
(1) Vs an open subset of a tws. E over R,
(2 U is an open connected subset of E := E+iE and U contains V;

(3) f.eH(U, F), neN, is a sequence of functions such that for every qeI' (F)
the sequence {qo f,: ne N} is locally uniformly bounded;

(4) for each xeV the sequence f,(x) is convergent to an element of F.

Then there exists f e H(U, F) such that, for every qeI(F), qo(f,(x)—
~f (x)) = O uniformly on compact subsets of U (n— o, xeU).
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Proof. Let Wbe an open balanced neighbourhood of a point ae V such
that WnNE < V and sup{go f,(x): xeW, neN} < oc. We observe that for
every affine line L if LA W # , then a non-empty interval is contained in
LA Wn V. Therefore, by the classical Vitali theorem, the sequence
{f,: neN} converges in the open set W n U. Now the assertion of Lemma 5
follows from Proposition 6.2 in [2].

We will need the following technical lemmas.

LeMMA 6 (Lemma 2.1 in [2]). Let D be an open subset of K. If f: D> F
is a mapping such that for every ueF’' the function uo f has the (n+1)-th
derivative at toe D, then f has the n-th derivative at t,.

LemMa 7 (I in [6], p. 54). Let D, := {w;eC: |w,+./wi—1] < R;}
(R; > 1) be an ellipse in the complex w,-plane with foci —1 and +1. Ler

Xi=DyxFyx ... xF)u...u(Fyx ... xF,_,xD,),

where F, denotes the interval [~1, 1] in the wy-plane. Let f: X - C be
holomorphic with respect to w,eD, for every fixed

By eers U—gs Ups gy cos U)EFy X oo XF (X F % ... XF,.

Then f is continuable to a holomorphic function f in

n /2 _ )
D :={weC"; Y lglwi+/wi —1i < 1};

=1 lgR,

D is the envelope of holomorphy of X and sup{f(w): weX}
=sup{|f(w): weD}.

3. Proof of the main theorem.
Lemma 1. Assume that

U,eNE), V,:=UnNE, X :=(V;xRU)U(RU,xV,), R >1,

A, e N(E,) is such that A,+ Ay + A+ A, < V,, By is a maximal open balanced
subset of A,+iA,,
R/8 1 -
W:.= 5 (B, xB,)eN(E, xE,).

Then for every f e GH(X) there exists exactly one function fe GH(W) such
that f=f in WnX and sup{|f(2): ze W} <sup{|f(2): zeX).

Proof of Lemma I. Let us fix feGH(X) and x := (x;, X3, X3, X4)€
€A}, y := (1, Y2, V3, ya)€AS. For s,teC* we put sx :=s, X;+5; X3+
+53X3+S4Xg, 1Y 1= by Y1ty ttayattyve, wi= (s, )eC’ Let

D:={weC®: |sf<1,|t| <R,ims=0}u{weC®: |s| <R, || <1, imt =0},

where for zeC", |z] := max{lz]: j = 1, ..., n}.



162 L. M. Druzkowski

Let us put
(1) goy(W) 1= f(sx,1y), w =(s,t)eD.
Note that, in particular, the function g, is defined in the cross
T:=(D,xF,;x ... xFg)u ... U(F;x ... xF;xDy),
where F; :=[-1,1], D;:= |w;eC: fwj+\»’W—_1| <Rl j=1..8
Owing to the assumptions imposed on f, the function g,, is separately

holomorphic on the cross 7. Thus by Lemma 7 there exists exactly one
function §,,€ H(P) such that

(2 dy=9y inPAD
and  sup {15, (W)|: we P} < sup g, (w): weD!,

where P := |weC®: |w| < r}, 2r ;= R"®~1.
Observe that

(3) Guy(5, 1) = Gyy(so, 1) i 5x = 59 x0.
For the proof of (3), let s, s, be fixed and write
h(t) 1= Guyy(os D—Gxy(s, NeH(t| < r);
hence by (1) we obtain
B(0) = Gugy (S0 N =Gay (5, 1) = [ (50 X0, (¥)=f (5, 1) = O

for |t| < I, imr =0 and so h = 0.
In view of (3) we get

(4) g.\'_v(S’ f) - gxoyo(SOa rO) if SX = S8g Xo, ty = toYo-
We define
(5) Frxy +irxy, vy, +iryy) i= g4, (r, ir, 0,0, r, ir, 0, 0)

for x;, xs€A,., v, V,€4,.

By dint of (4) the function f is well defined in the open balanced set
W :=rB, xrB,, where B, is the maximal open balanced subset of
A,+id, < E,.

We see that for every fixed a = r(a,+ia,), u = r(u, +iuy)e B; and b
= r(h, +iby), v = r(v,+iv,)e B, the function

fa, By+z(u, v) = Gy (s ir,zr,dze, vy v, 2r, izr),

where x := (a,, aj, uy, uy), y 1= (b, bs, vy, v3), |2| < 1, is holomorphic in
the unit disc. So by Lemma 1 (l) we get [ e GH(W). By (1), (2), (4) and (5) we
have f = fin W~ X and from this, an account of Lemma 3, we derive that

f is unique, in view of (1) the inequality sup !|f (2): e W! < sup![f(=):
ze X| holds true. Q.E.D.
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Lemma II. The assumptions are the same as in Lemma 1. We assert thar
for every function f e GH(X, F) there exists the unique function f e GH (W, F)
such that:

f=f inXnW,
for every geI(F) the inequality sup(qof(z): ze W) <supiqof(z): zeX)
holds true.

Proof of Lemma II. For every ueF the function f, := ucf belongs to
GH (X), and so by Lemma I there exists a function f,e GH (U) such that f,
= f,in Wn X. According to Lemma 1 (iii) we may write the Taylor series
for f, at the point Oe W

Pa

(1) fu(2) = Z 7780 £u(2) ze WeN(E, xE)).

=0
Since f, = f, in Wn X, from Definition 6 gives the equality

oo = &
b4 = Srx] =]

where xeE, xE,, | =0, 1, ...
By virtue of Lemma 6, there exists the /-th derivative of the function f;
we put

0o f(x)i=[f(tx]¥ =0, 1=0,1,...

db f is the I-th G-differential of f, because for every ueF’ the mapping
uodh =06k f, = o fu[El,(EZEQ(Elez,K) and consequently &, fe
Q'(E,xE,, F), | =0, . We put

55f(:):= b f(2), zeE,xE,, I=0,1,...

Since, for every ueF', ucdh f = 6, f, we have the equality
21
uo z —5’f = ’gol—!cs{,f,,.

Because a series of homogeneous polynomials from a t.vs. E to a s-c. l.cs. F
converges in an open set W iff it weakly converges in W (Proposition 5.6 in
[2]), it is legitimate to deline

f@ = Z F‘S‘I() for ze W.

By Theorem 5.1 ([2]), f€GH (W, F) and since uo f = f, we have f = f in
WnX. If M:=supi{go f(z): ze X, then by Lemma I

sup{luof(:)l: ceW| < suplluof(2): zeX} <€ M
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for every ue F’ such that Ju(y)] € q(y) for ye F. Hence by the Hahn-Banach
theorem we get qo f(z) < M for ze W. Q.E.D.

LemMA III. Under the same assumptions as in Lemma 1, if additionaly E,,
E, are metrizable and E, x E, is a Baire space, then for every fe H(X, F)
there exists a unique function fe H(W, F) such that f = fin X " W.

Proof of Lemma IIl. By Lemma II there exists a function
feGH(W, F) such that / = fin X n W. Let us take a fixed ue F’. According
to Lemma 2 it is sufficient to show the boundedness of the function g
:= yofin some open non-empty subset of the domain W (because E, x E, is
a Baire metrizable space).

Let d, be a metric in the space E,, d,(x+iy) := d,(x)+d,(y) be the
metric in the space E,, B,(a,r):= {x€E,: di(a,x) <r} and B,(a,r)
.= {zeE,: d,(a,z) <r}. The function g belongs to GH(W) and
gwax€e HW N X). Let A, := {xeV,: |g(x,y)| < m} for yeB,(0, 1/]).
Since g is separately continuous on ¥, x V;, there exists 4, # O. If x,€ 4,,
and x,— xg€ V;, then

sup {|g(x,, Y): d3(0, y) < I/, neN} < m, g(x,, ») > g(x0, )

for n—- o0, yeB, (0, 1/).

By Lemma 5 (Vitali theorem) and by Lemma 3 we have g(x,, y)
—g(xg, y) for n—>oc, yeB,(0, 1/) and consequently |g(xq, y)] < m for
y€B,(0, 1/l). Therefore A,, is closed in V; and | A, = V. From the

m,leN
Baire property of ¥, we derive the inclusion B, (a,, p) < intA,, , # O.
Write

Cim:= (yEBz(O 1h: lg(x, y)) < m for xeB,(ay, 1/D);.

By an analogous argument we show that B,(a,, s) < intC,, # @.

Let us put r:= min{p, s, 1/], l/lOJ and M := max{m, my} and let us
consider the cross Y:= B(a;, ) x B,(a;, VuB,(a,, ) xB,(ay, r). We
obtain sup {lg(2)]: zeY} <M and by Lemma 1 we denve the existence of an
open balanced set Tsuch that sup {|g(z)]: ze T} € M. Since W is an open
connected set and E, x E, is a Baire space, geH(W) Q.E.D.

Proof of the theorem. For = (Vi xUy)u(U,xV;), where
V,etopE,, V, < U,etopE, we put
U:= | (a+W(a),
aeVl J-tV2
W(a) being the same as in Lemma |, i.e, for a = (a,, a,) the set W(a) is
defined to be equal to }(R'®~1)(B, (a;) x B, (a,)); here B,(a,) is the max-
imal open balanced subset of A,(a,)+iA,(a,), where A,(a)eN(E,) and

Ax(a)+ A (@) + Aa)+ A(a) = V, « RTY({UNE), R > 1.
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It is obvious that ¥; x V, < Uetop(E, xE,). If U, = E, for k = 1, 2, then
W(a) can be chosen to be the whole space E, xE, and consequently
U = E, x E,. The above remarks end the proof of assertions 1°, 2°, 3° of the
theorem.

As regards assertion 4° observe that if Ex E; is a Baire space, then E
and E, are Baire spaces, too. (The converse is false: even if E is a metrizable
Baire space, E x E needs not be a Baire space [3].) Since E is viewed in the
product topology of E x E, it follows that if E, xE, = E, xE, is a Baire
space, then E,, E, and E, xE, are Baire spaces.

Therefore by Lemma 1T we get f e GH(U, F) and by the construction of
U we see that for every connected component 4 of U it is true that
B:= An(V, xV,) is non-void. In virtue of Lemma 4, for every B there exists
an open non-empty set B and a functions fe H(B, F) such that the restric-
tions of f to B is equal to /. Now by Lemma 3 and Lemma 2 we get
feH(A, F) for each connected component A of U.

Assertion 5° is an immediate consequence of Lemma III. The proof of
the theorem is completed.

Remark 1. The continuation of a separately holomorphic function f
defined in a cross of the form X = (4 xU,)w(U, xU,), where A satisfies
the L-condition at some point ae U, and fis bounded on an open subset of
U, x U,, was studied in [4].

Remark 2. Observe that the assumption: E is the complexification of a
real t.v.s. E does not essentially restrict generality in the above consider-
aticns, because every complex t.vs. E may be slipt into the real and
imaginary parts (ie. E = E+iE, where E is a tvs. over R, E ¢ E and
EniE = \0})
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