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Continuous solutions of a functional equation *

by M. K. Forrt, Jr. (Athens, Georgia)

§ 1. In a series of two papers, [2] and [3], M. Kuczma has studied
the functional equation

(1) plp(@) = g(v, p()

where ¢ denotes an unknown function and ¢ is given.

We assume that § is a continuous and strictly increasing real valued
function on the closed interval [a, b] of real numbers such that g(a) = a,
B(b)=1"b and B(x) >z for a < x< b. Concerning the function g, it is
assumed that:

(i) g(x,y) is defined for all points (x, y) in the set K = {(z, y)la <z < b
and z <y < f(x)}, g is continuous on K, and g is strictly increasing
with respect to each variable;

(i) g(a,a)=a, g(b,b)=0>, g(x,x)>z for a<x<b, and g(x,y)>y
for a<z<b and z < y < B(x);

(iii) g(x, B(z)) = B(w) for a <z < b.

(Our notation differs slightly from that of Kuczma, and we do not
permit a, b or B(x) to be infinite.)

In his first paper, [2], Kuczma proves that if a < 2, < b, then equa-
tion (1) has solutions which are continuous and strictly increasing on
[y, b]. In the second paper, [3], he proves that equation (1) has a solution
which is defined and increasing on [a, b], but he does not prove that
such a solution exists which is continuous. Kuczma raises the question
in [3] as to whether (1) has a continuous solution which is defined on [a, b].
He conjectures that (1) has a unique solution defined in [a, b], and points
out that if this is true then the unique solution must be continuous and
strictly increasing.

We show in this paper that although (1) always does have a solution
which is continuous and strietly increasing on [a,b], such a solution is
not necessarily unique.

* This work was supported by a National Science Foundation Grant, NSF—
G12972.
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§ 2. Let C be the set of all real valued continuous functions on [a, b].
If pe C and y e C, we define

el(p, v) = sup{lp(z) —y(x)| la < @ < b}.

It is well known that ¢ is a metric for C, and that convergence of sequences
in (C, g) is equivalent to uniform convergence.

As a matter of notational convenience, we assume that ‘function”
has been defined by the ‘“set of ordered pairs’ method. Thus, a member ¢
of C is the same as the subset of the plane which is frequently called
éthe graph of ¢”.

We define

M= {p|lpeC,pC K and ¢ is strictly increasing},

and then define a function 7' on M into M by requiring that
T(¢)(2) = g™ (2), 2)

for all pe M and a < z < b. It is easily seen that T is one-to-one and
continuous.
It is easy to see that a continuous and strictly increasing function

¢ satisfies (1) if and only if T'(p) = ¢. Hence solutions of our equation
are fixed points for the mapping 7.

As in [3], we define a homeomorphism R on K into K by letting

R, y)=(y,9(=,9) -
If p=(x,y), it is notationally convenient to write R(p) for R(z,y).

Remark 1. It is easy to verify that if p ¢ K and ¢ ¢ M, then p ey
if and only if R(p) e T'(p).

LemMMA 1. If ¢> 0, there exists 6 > 0 such that if a <u <v<b,
v—u>¢ and e T[M], then (p(v) —p(u))/(v—u) > 6.

Proof. Let us assume the lemma false. Then, for each positive
integer n there would exist ¢, ¢ T[M] and numbers u, and v, such that
@ < Un <y <b, n—tn > and (p(va)—@(us))/(vn—un) < 1jn. If we let
Un = (tn, @n(n)) and Vs = (v, ga(vs)), we may assume without loss of
generality that there are points Uy, = (4, ¥) and V,= (05, ¥), Uy < ¥y,
such that Up—U, and V,—V, as n—>co. If 2, @,, ¥,, ¥, are numbers such
that (z,,v,) = R (U,) and (x,, ¥,) = R '(V,), then z,> x, and ¥, < ¥,.
This is impossible, since R~ (Us)—>R(U,) and R '(Va)—>R '(V,) as
n—>oo, and by our Remark R™'(U,) and R '(V,) are on the graph of
the increasing function 7 '(¢,) for each .

COROLLARY 1. T[M]C M.

Proof. Let ¢ e T[M]. We must prove that ¢ is strictly increasing.
There is a sequence ¢,, @,, @3, ... in T[ M] which converges uniformly to ¢.
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Suppose a < u<v<b. Let e= (v—u)/2 and use Lemma 1 to obtain
8> 0 so that (qrn(v)—%(u))/(v u) > 6 for all n. It follows that (p(v)—
—@(u))/(v—u) > 6 and hence ¢ is strictly increasing.

LEMMA 2. T M) is an equi-uniformly continuous set of functions.

Proof. Suppose that T M] is not an equi-uniformly continuous
set of functions. Then there exists a sequence y,, y,, v;,... of functions
in Y[ M] and points p» and ¢, in vy, such that p, —p and ¢ga—¢ as n oo,
where p and ¢ are distinet points in RYK] which have the same
first coordinate. Thus, R~ (p:) >R (p) and R '(g.) >R () as n— oo,
where R '(ps) and R~ '(gs) are points on T '(y,) and R ’(p) and R (q)
are distinct points of R[K] which have the same second coordinate. Since
T *(ws) €e T[M] for each n, this is not possible by Lemma 1.

COROLLARY 2. T M] ¢s a compact subset of T[M].

Remark 2. If we partially order M in the natural way by defining
a; < a, if and only if a(t) < ay(t) for all {e[a, b], then T is order re-
versing on M. That is, if ¢; < a, then T'(a) < T(a,).

THEOREM 1. There exists a continuous, strictly increasing solution
of (1) which is defined in the closed interval [a, b].

Proof. Let y,= 8 and y.= T(y,—1) for n > 0. It is easily seen
that y, is the identity funetion on [a, b], and hence y, and v, are respectively
the ‘“largest’’ and ‘‘least” members of. M. By repeated application of
Remark 2, we obtain: vy, =y, > 9, > ...; ¥ = Y241 for each n; and
v, <y <P < ... It follows that the sequence w,, v, y,, ... converges
pointwise to a monotone increasing function o, and that v, s, vs, ...
converges pointwise to a monotone increasing function z. It is obvious
that 7 < 0. Since y, € T M] for n > 1, the functions in the preceding
sequences are equi-uniformly continuous, and hence pointwise convergence
implies uniform convergence. Thus, = and ¢ are continuous functions,
lim g(y2n, 0) = 0 and lim g(ysp+1,7) = 0. Since y, e T[M] for n > 0, we

n—00 n—00

see that ¢ and = belong to T[M], and it follows from Corollary 1 that ¢
and t belong to .M.

We now define K,= K and K,= R[K,_,] for » > 0. It is easily
seen that

Kop = {(z,y)la <z <
Kopyr = {(z,¥)|a <z <

and Yon+1 (.’E <
Y

b )
b and yanta(x)

If we let D= ﬁ Ky, then it follows that

n=~0

D= {z,y)la<x<b and () <y <o(x)}.
For a point p ¢ K, R"(p) is defined for all negative integers » if and only
if p e D. (We observe that, in the notation of [3], V, = [z(z), o(x)].)
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Now, choose any point P, = (x,, %,) in D for which a < z, < b, and
let P, = (2, y,) = R(P,). Define ¢ on [x,, x,] so as to be continuous and
strictly increasing, and so as to satisfy ¢(z,) = %o, ¢(21) = ¥y, T(2) < p(2)
< o(2) for z, < ¢ < x,. It is possible to do this since ¢ and 7 are continuous
and strictly increasing. Finally, as was shown in [2], [3], ¢ may be extended
uniquely to a function on [a,b] which satisfies equation (1). The solution
of (1) which we obtain in this manner is continuous and strictly increasing
on [a,b].

§8. In this section we prove an extension theorem concerning
funections which are strictly increasing in each wvariable. This result is
applied in the final section of our paper to show that equation (1) does
not necessarily have a unique solution.

If p=(p,, p,) and ¢ =(q,,q,) are points in the plane, we define
p < q to mean that p, < ¢, p, < ¢, and p # q. If f is a real valued function
whose domain is a subset of the plane, we say that f is increasing if f(p)
< f(q) whenever p < ¢, and we say that f is strictly increasing if f(p) < f(q)
whenever p < ¢.

We let s be a positive number, and let S be the solid square defined by

S={z,y)—s<z<s and —s<y<s}.

Although the following lemma could be obtained as a special case of
a theorem due to L. E. Ward, Jr. (see [4], p. 365, Theorem 11), it seems
advisable to give a separate proof.

LeMMA 3. If A is a closed subset of S and f is a continuous and in-
creasing real valued function on A, then f can be extended to a continuous
and increasing real valued function g in 8.

Proof. There is no loss of generality in assuming that (—s, —s)
and (s, s) are members of A. We now define two real valued functions U
and L on S by letting

U(p)=1inf{f(2)]ze A and p <z}
and
L(p) = sup{f(2)| 2 ¢« A and z < p)

for all p € S. The following properties of U and L are easily verified:
(i) L(p) < U(p) for all p €8,
(i) L and U are increasing on S,
(iii) U is lower semi continuous and L is upper semi continuous on 8, and
(iv) if p ¢ 4, then L(p) = f(p) = U(p).
It is well known that there is a continuous real valued function %

on 8 such that L(p) < h(p) < U(p) for all p ¢ 8 (see [1], p. 75, the remark
after Theorem 9). If we now define

g(p) = sup {h(2)|z ¢ § and = < p},
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we obtain a continuous and increasing function g on §, and L(p) < g(p)
< U(p). It follows that g is the desired extension of f.

THEOREM 2. If A is a closed subset of S and f is a continuous and
strictly increasing real valued function on A, then f can be extended to a con-
tinuous and strictly increasing real valued function g on 8.

Proof. We may assume without loss of generality that (—s, —s)
and (s, s) are members of A. Functions U and L are defined as in the
proof of Lemma 3. Since % is eontinuous and strictly increasing on A,
it follows that L(p) < U(p) for pe S—A. We define m(p) = [L(p)+
+U(p)]/2 and e(p)=[U(p)—L(p)]/4 for peS— A. Moreover, for
P=(p1yP)eS—A and z=(2,2)e8S, we define u(p,2)=m(p)-+
+(2,—p,) +(2,—p,). Since U is lower semi continuous and L is upper
semi continuous, there exists d(p) > 0 for each p ¢ §—A4 such that if
ze S and [z—p| < é(p), then

L(2z) < L(p)+¢&(p) = m(p)—=(p)
< u(p,z)<m(p)+e(p)= U(p)—e(p) < U(?).

If we define B(p)= S~ {z| |¢—p| < é(p)} for pe S—A, then B(p) is
a closed set and B(p) n A = @. There exists a sequence ¢, gz, g, --
of points in §— A4 such that

S—4 =) Blg).

n=1
We now define a function f, on A v B(g,) by letting

f(?) for 2¢A4,

ute) = {#(qn, z) for zeB(qn)-

Each f, is easily seen to be sirictly increasing on A u B(gs), and we use
Lemma 3 to extend f; to a function ¢, which is continuous and increasing
on 8. The functions g, are uniformly bounded since (—s8, —s) and (s, 8)
are in A and each g, assumes its minimum and maximum respectively
at these points. We now define:

o0

g(2) = D ga(2)/2"

n=1

for each 2z € S. The function ¢ is a continuous extension of f and is easily
shown to be strictly increasing on 8.

§ 4. In this paragraph we construct a function g for which the equa-
tion (1) will have more than one solution. This is done by first describing
a pair of functions ¢ and y and then using Theorem 2 to obtain a function ¢
for which (1) will have ¢ and y as solutions.
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Let [a, b] be a closed interval, and let ¢ be a homeomorphism of
[a, b] onto itself such that ¢(x) > « for a < z < b. We choose a point p
interior to [a, b], and then define p, = ¢*(p) for each integer ». 1t is obvious
that: pn < pp+1 for each n, pp—b as n—>oo, and pa—>a as n—>—oo, We
let Jp = [Pny Pat1l 4

We now define, for each integer n, an orientation preserving homeo-
morphism y, on J, onto J,,. First, we choose y, to be a homeomorphism
of J, onto J, such that y(z) > ¢(z) for po< # < p,. If » is a non negative
integer and ¥_s, Y-n+1, .-, ¥» have been defined, we define

Yr(@) = [9(2) +¢'ya (2)]/2
and we choose a homeomorphism y_,_, of J_,_; onto J_, such that

Yonoa(Z) < p1ag’(®) if n is even
and
Yona(®) > pap(x) if n is odd.

We now define a homeomorphism y of [a, b] onto [a,d] by letting
y(a) = a, p(b) =0b, and y(x) = yu(x) for zed,. It is not difficult to
prove (although there are several cases to consider) that for each in-
teger n, if py < ¥ < pp4, then:

y(x)>@(x) and y*z)>¢*x) if n is even,
and
p(iz)<e(x) and Az)<e@¥zx) if »is odd.

It is easy to see that

max (¢(), p(2)) < min (¢*(z), y*(z))

for @ < # < b, and hence we may choose a homeomorphism e on [a, b]
onto itself such that

max (p(2), (z)) < a(z) < min (p(z), ¥*(a))

for a < 2 < b. We choose a homeomorphism S on [a, b] onto itself such
that

max (g¥(x), y¥(x)) < B(x)
for a <z < b.

We now define a set 4 in the plane by
A=Bveovuyv {(z,z)la<e<b}.
We define a real valued function f on A by requiring:
He, B@) = @), flz,p@)=4¢*2), [l v@)=-v),

and f(x, ) = a(x). It is easy to verify that f is strictly increasing on A.
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We define K = {(z,y)la <2 <b and z <y < f(z)}. We may now
enclose K in a sufficiently large square and apply Theorem 2 to obtain

a function ¢ on K which is continuous, strictly increasing, and an ex-
tension of f. Since

¢¥x) = f (2, (@) = ¢ (z, (@)
and

yi(w) = f(m7 V’(m)) = g(:v, "P(w)) ’

we see that both ¢ and y are solution of (1).
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