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Topological transversality. Applications to
initial-value problems

by J. W. Lee and D. O’ReGgaN (Corvallis, Oregon)

Abstract. A simple fixed point analysis is used to examine the dependence of the interval of
existence for an initial-value problem upon its initial data and the nonlinearity in the differential
equation. These results refine and extend a theorem of Wintner, and are shown to be best
possible for the class of problems considered.

1. Introduction. The basic existence theorem for the initial value problem
(L.1) y=fty yO)=r,

where f: Z — R" is continuous and Z is the cylinder [0, T] x R", guarantees
that a solution exists for ¢t > 0 and near 0. Familiar examples show that the
interval of existence can be arbitrarily short, depending on the initial value r
and the nonlinear behavior of f. In the present note, we examine the
dependence of the interval of existence of f and r. Our results are closely
related to earlier work of Wintner and of Conti which has focused on global
existence in the future, ¢t > 0. See, for example, Hartman [5] and Corduneanu
[1].

The analysis in these works rests on two key ideas: (i) the initial value
problem has a (maximal) solution y(f) such that (r, y(¢)) tends to the
boundary (i.e, leaves any compact set) of the cylinder Z; (ii) the construction
of a comparison, initial value problem known to have a global solution
which dominates y(f). The comparison in (ii) reveals that y(t) is bounded.
Since (r, y(r)) tends to the boundary of [0, T] xR" it follows that the
solution extends across the entire interval from 0 to T The comparison
involved in (ii) is typically based on the inequality |f (¢, y)| < ¥ (Jy|), where
¥ > 0 is continuous and

® du

f——

o ¥ (u)

The function y (u) delimits the growth of f on the cylinder. With these
assumptions on ¥ (u), the solution y(t) to (1.1) extends from O to T provided
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If(t, )| < ¥(ly]) holds on [0, T] x R". Consequently, if this inequality actual-
ly holds on [0, o) xR, a solution to (1.1) exists for all r > 0.

We obtain these conclusions and some interesting additional results by
essentially different and more natural arguments. -Our analysis is based on
fixed point arguments and the use of a priori bounds. This point of view
leads naturally to the study of the dependence of the interval of existence of
a solution to (1.1) upon r and f. Additionally, it automatically produces best
possible results. Our arguments yield simultaneously the existence of a
solution and the maximal interval of existence for the class of initial value
problems considered. In contrast, the approach based on (i) and (ii) first
requires a local existence result, then prolongation to a maximal solution,
and finally construction of a comparison problem to establish the interval of
existence of solutions to (1.1). The rather technical details required to carry
out this program, especially when f(t, y) is not locally Lipschitz, are
replaced by a simple fixed point analysis.

2. Maximal intervals of existence for classes of initial value problems.
The use of a priori bounds to establish existence theorems for boundary
value problems is well known, dating back to S. Bernstein at the turn of this
century and the systematic developments of Leray and Schauder in the 20’s
and 30’s. See, for example, Dugundji and Granas [2] or Granas, Guenther
and Lee [3], [4]. These techniqués also apply to initial value problems;
however, this fact seems to have been largely overlooked. Specializing
Theorem 2.1 in [4] for initial value problems, we have

Tueorem 2.1. Let f: [0, T] xR”— R" be continuous. Suppose there is a
constant B such that |y(t)], |y'(t)) < B for t in [0, T] for each solution y(t) to

y=Af(t,y), 0<t<T
y(0) = 0.

(2.1),

for any 0 < A< 1.
Then the initial value problem

y=rit,y, 0<t<T
y(0) =0,
has a solution y in C'[0, T].

Theorem 2.1 in [4] is formulated for a scalar equation; however, the
proof extends immediately to the case of systems as in the present formula-
tion.

In view of Theorem 2.1 we obtain immediately

(2.1)

THEOREM 2.2 Let y: [0, o0) — (0, o0) be continuous, and assume

22 - Lf (6, I < ¥y
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Jor all (¢, y)e[0, T] xR". Then the initial-value problem (2.1) has a solution in
C!' [0, T] for each

(23) T<To= [ s

Moreover, this result is best possible in the sense that the initial value problem
y=F@ty, o<e<T
y(0) =
with f(t, y) = (W (ly), O, ..., 0) and for which (2.2) holds can have.a solution
only if T<T,.
Remark. If T, = oo, Theorem 2.2 is called Wintner’s theorem [5], [6].
Proof. To prove existence of a solution in C! [0, T] we apply Theorem

2.1. To establish the a priort bounds for (2.1),, let y(¢) be a solution to (2.1),.
Then

(2.4)

I <I1Af (1, Y < ¥ (IyD.

Now if |y(1)] # 0 we have |y|' = y-y/lyl <|y'| and the inequality above
yields

' < ¢y

at any point t, where y(t) # 0. Suppose y(t) # 0 for some ¢ in [0, T]. Since
y(0) =0, there is an interval [a,t] in [0, T] such that [y(c) >0 on
a<o<t and y(a) =

Then the previous inequality implies

IIy(a)l do _
W(ly(o)l)
Ol dy * du
- e T< T, =
Yy StTes vy

This inequality implies there is a constant M, such that |y(t)] < M,. Now
(2.1), gives

ly' () < max |f(t,u)=M

[0.T] x[ - Mg,Mg]

So, |y(t)l, Iy’ (1)) < B =max(M,, M,), and existence of a solution to (2.1} is
established.

Finally, y(t) = (y1(?), ..., y.(t)) solves (2.4) if and only if y,(1)= ...
= ya(t) =0 and y; =¥ (lys)), y1(0) = 0. Clearly, y,(t) >0, so y,(t) >0 and
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integration yields

Thus,

1 (D ®
j' i < ﬂ_ = Tm’
o V() oV

which completes the proof of Theorem 2.2.

T=

Theorem 2.1 also holds for the inhomogeneous Boundaty condition y(0)
=r. See Theorem 2.4 in [4]. So trivial adjustments in the proof above yield,

THEOREM 2.3. Let f(t, y) and Y (u) satisfy the hypotheses in Theorem 2.2.
Then the initial value problem

y =1y, 0<t<T,‘

25
) yQ=r
has a solution y(t) in C'[0, T] for each
® du
T<Ty,=\|——-.
< |!| ¥ (u)

Moreover, this result is best possible as described in Theorem 2.2.
A few examples illustrate these results.

ExampLE 1. (Linear and sublinear growth.) Suppose

/e M<A@QP+B@), p<l,
for bounded functions A(t), B(t) = 0. If A, and B, are upper bounds for A(t)
and B(¢), then

1S (¢, Y < AolylP+Bo = ¥ (Iy))
and
® du
T = _— =
® I;[l Ao u"+Bo ®
Consequently, the IVP (2.5) has a solution on [0, T] for all T > 0.
ExaMmpLE 2. (Polynomial growth.) Suppose

1, Y <A@ Y™+ B(@)

for m > 1 and for bounded functions A(z), B() > 0. If A, and B, are upper
bounds for A(t) and B(t), then
: s du

e <A™ +Bo =¥ (), Tp= |£| Ao+ By
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and the IVP (2.5) has a solution on [0, T] for any T < T,. In the case of
zero initial data, r = 0, we have
A ®  du _ mese(n/m)

T = = .
== | Zow By ~ mATm BG-O

ExampLE 3. (Estimate on the time before shoéks.) The first order
quasilinear partial differential equation

a(x,y, Wu,+b(x, y, wu, =c(x, y, v

with suitable assumptions on the coefficients a, b, and ¢ can be solved by the
method of characteristics. If the solution surface u = u(x, y) is to contain the
smooth, initial curve

Xo =Xo(s), Yo=1yol(s), uo=1ugls),

where 0 < s <1 is a parameter, then the characteristic IVP is

dx dy b du

a=" wT wT

.V(Os S) = .VO(S), u(o’ S) = Uy (S),

where x = x(t, s), etc, and s is regarded as a parameter in the initial-value
problem. The solution to the initial value problem yields the solution surface
by expressing u(t, s) in terms of x and y after solving x = x(t, s), y = y(t, 5)
for t =t(x, y) and s = s(x, y). In the region about the initial curve, where
this can be done, a smooth solution surface results. Suppose we have an
estimate on the growth rate of the coefficients in the partial differential
equation; say,

¢,  x(0,s) = xp(5),

1f (x, y, 2 = [(a(x, y, 2), b(x, y, 2), c(x, y, 2))| < ¥ (i(x, , 2))).

Then by Theorem 2.3 no shocks can develop up to time

* du
T<Tm= _— where r = max Xo, (5), s), o (5)),
|!|¢(u) ’ os;snl( 0 (), Yo(8), to (5))

assuming of course that ¢+ and s are expressible as functions of x and y as
required above.

ExAMPLE 4. (Slightly greater than linear growth.) As Wintner notes in his
paper, if Y (u) ~ulnu as u - o, then T, = o0 so global existence in obtain-
ed for this slightly greater than linear growth. On the other hand, if ¥ ()

~ u(Inu)® as u — oo, then the improper integral is convergent and T, < o0.
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