Asymptotic properties of the iterates of stochastic operators on (AL) Banach lattices

by Wojciech Bartoszek (Wrocław)

Abstract. The asymptotic periodicity of stochastic operators on AL Banach lattices is considered.

Let $(E, \| \|)$ be a real Banach lattice. We denote by E_+ the cone of positive elements of E. A linear operator $P: E \to E$ is said to be positive if $Px \in E_+$ for $x \in E_+$ and a contraction if $\|Px\| \leq \|x\|$ for all $x \in E$. Recently, the asymptotic behaviour of P^nx for such operators have been studied intensively. In particular, if E is $L^1(m)$ and P is a stochastic operator on E (i.e., $P \ge 0$ and $\|Pf\| = \|f\|$ for $f \in L^1_+(m)$), then some conditions guaranteeing the regularity of P^nf have been given in [5], [9], [10]. The asymptotic periodicity for an arbitrary nonnegative contraction on Banach lattices was investigated in [1] and [14].

A linear positive contraction P acting on E is said to be asymptotically stable if there exists a unique, positive and normalized vector x_* such that for every $x \in E_+$ with ||x|| = 1

$$\lim_{n\to\infty}P^nx=x_*.$$

(Clearly, x_{\star} is then *P*-invariant.)

Recall (see [8] or [12]) that a Banach lattice E is called an AL-space if it satisfies the axiom ||x+y|| = ||x|| + ||y|| for all $x, y \in E_+$. If ||Px|| = ||x|| for all positive x from the AL-space E, then P is called a (generalized) stochastic operator on E. In this paper, the asymptotic behaviour of P^nx (in particular, asymptotic stability) will be investigated, where P is a stochastic operator on a fixed AL-space E.

Remarks 1. It is evident that every $L^1(m)$ is an AL-Banach lattice. Kakutani's result [4] (see also [12], Theorem 8.5) says that the converse holds,

AMS subject classification. 47A35, 47B38, 47D07, 60F25.

Key words and phrases. Stochastic operator, asymptotic stability, asymptotic periodicity, quasi-compact.

i.e., for every AL-space E there exists a locally compact space X and a strictly positive Radon measure m on X such that E is isomorphic with $L^1(m)$.

2. Let (X, \mathcal{B}, m) be a standard Lebesgue space and let P be a stochastic operator on $L^1(m)$. It is well known (see [7], p. 115) that there exists a Markov process $\{\zeta_n\}_{n\geq 0}$ with phase space X such that for every measurable $A\in \mathcal{B}$ we have $\int_A P^n f dm = P_f$ ($\zeta_n \in A$), where P_f is the probability (on the canonical space) determined by the initial density f. Thus the evolution of the process $\{\zeta_n\}_{n\geq 0}$ is described by the sequence of the iterations $P^n f$, and the asymptotic stability of the operator P means that the distributions of ζ_n converge to some stationary probability (independently of a initial law).

The following proposition gives lattice conditions for the asymptotic stability of stochastic operators. This result seems to be known for σ -finite $L^1(m)$ spaces but for the convenience of the reader we present a short proof here.

PROPOSITION. Let P be a stochastic operator on an AL-space E. If

(A_e) there exists $0 < \varepsilon \le 1$ such that for every normalized $x_1, x_2 \in E_+$ there exists n such that $||P^n x_1 \wedge P^n x_2|| \ge \varepsilon$

and for some positive (nonzero) element $y \in E$ the orbit $\gamma(y) = \{P^n y : n \ge 0\}$ is relatively weakly compact, then P is asymptotically stable.

Proof. First, we show that for every positive x_1 , x_2 with $||x_1|| = ||x_2|| = 1$ we have $\lim_{n \to \infty} ||P^n x_1 - P^n x_2|| = 0$.

Let $\alpha_n = \|P^n x_1 \wedge P^n x_2\|$ and $\alpha = \lim_{n \to \infty} \alpha_n$ (clearly, α_n is nondecreasing). If $\alpha < 1$ then there exists a positive n_0 such that $\alpha_n > \alpha - \varepsilon(1 - \alpha)$ for $n \ge n_0$. By (A_s), for some positive m

$$\|P^m(P^nx_1-P^nx_1\wedge P^nx_2)\wedge P^m(P^nx_2-P^nx_1\wedge P^nx_2)\|\geqslant \varepsilon(1-\alpha_n).$$

Thus,

$$\begin{split} \|P^{m+n}x_{1} \wedge P^{m+n}x_{2}\| &= \|(P^{m}(P^{n}-P^{n}x_{1} \wedge P^{n}x_{2}) \\ &+ P^{m}(P^{n}x_{1} \wedge P^{n}x_{2})) \wedge (P^{m}(P^{n}x_{2}-P^{n}x_{1} \wedge P^{n}x_{2}) + P^{m}(P^{n}x_{1} \wedge P^{n}x_{2}))\| \\ &= \|P^{m}(P^{n}x_{1}-P^{n}x_{1} \wedge P^{n}x_{2}) \wedge P^{m}(P^{n}x_{2}-P^{n}x_{1} \wedge P^{n}x_{2}) \\ &+ P^{m}(P^{n}x_{1} \wedge P^{n}x_{2})\| = \|P^{m}(P^{n}x_{1} \wedge P^{n}x_{2})\| \\ &+ \|P^{m}(P^{n}x_{1}-P^{n}x_{1} \wedge P^{n}x_{2}) \wedge P^{m}(P^{n}x_{2}-P^{n}x_{1} \wedge P^{n}x_{2})\| \\ &\geqslant \varepsilon(1-\alpha_{n}) + \alpha_{n} > \varepsilon(1-\alpha) + (\alpha-\varepsilon(1-\alpha)) = \alpha, \end{split}$$

which contradicts $\alpha_n \leq \alpha$. Since

$$||P^{n}x_{1}-P^{n}x_{2}|| = ||(P^{n}x_{1}-P^{n}x_{1} \wedge P^{n}x_{2})-(P^{n}x_{2}-P^{n}x_{1} \wedge P^{n}x_{2})||$$

$$\leq ||P^{n}x_{1}-P^{n}x_{1} \wedge P^{n}x_{2}|| + ||P^{n}x_{2}-P^{n}x_{1} \wedge P^{n}x_{2}|| = 2(1-\alpha_{n})$$

and $\alpha_n \to 1$, we have $\|P^n x_1 - P^n x_2\| \to 0$. To end the proof it is enough to prove that there is a P-invariant normalized vector $x_* \in E_+$. In fact, from the above considerations, $0 = \lim_{n \to \infty} \|P^n x - P^n x_*\| = \lim_{n \to \infty} \|P^n x - x_*\|$. The existence of x_* is

a consequence of the von Neumann Ergodic Theorem. By this theorem, the weak compactness of $\gamma(y)$ implies the convergence of the Cesàro means $n^{-1}(y+Py+\ldots+P^{n-1}y)$ to a P-invariant vector \bar{y} . Clearly, \bar{y} is positive and is normalized by the stochasticity of P.

Remark 3. If P is an asymptotically stable stochastic operator, then there is a linear positive functional $A \in E^*$ such that $\lim_{x \to a} P''x = A(x)x_*$ for every

 $x \in E$. In fact, by the decomposition $x = x^+ - x^-$ we have

$$\lim_{n \to \infty} P^n x = \lim_{n \to \infty} P^n x^+ - \lim_{n \to \infty} P^n x^-$$

$$= \|x^+ \| x_{\star} - \|x^- \| x_{\star} = (\|x^+ \| - \|x^- \|) x_{\star}.$$

So, $\Lambda(x) = ||x^+|| - ||x^-||$ is the desired positive linear functional on E.

The following corollary is a generalization of some results from [9].

COROLLARY 1. Let P be a stochastic operator acting on an AL-space E. If there exists $y \in E_+$, ||y|| < 2, such that $\lim_{n \to \infty} ||(P^n x - y)^+|| = 0$ for every normalized $x \in E_+$ then P is asymptotically stable.

Proof. We show that the assumptions of our proposition are fulfilled. The weak compactness of an arbitrary trajectory $\gamma(x)$ $(x \in E_+, \|x\| = 1)$ is a straightforward consequence of the weak compactness of ordered intervals in AL-spaces (see [12], Corollary, p. 119). We only have to notice that the iterations $P^n x$ are attracted in the norm to the weakly compact interval [0, y]. Now we show that condition (A_p) holds where $0 < \varepsilon < 2 - \|y\|$. Let $x_1, x_2 \ge 0$, $\|x_1\| = \|x_2\| = 1$, and let $\delta > 0$ be arbitrary. Since for sufficiently large n

$$||y|| \ge ||(P^{n}x_{1} \wedge y) \vee (P^{n}x_{2} \wedge y)|| = ||((P^{n}x_{1} \wedge y) - (P^{n}x_{1} \wedge P^{n}x_{2} \wedge y))| + ((P^{n}x_{2} \wedge y) - (P^{n}x_{1} \wedge P^{n}x_{2} \wedge y)) + P^{n}x_{1} \wedge P^{n}x_{2} \wedge y||$$

$$= ||P^{n}x_{1} \wedge y|| + ||P^{n}x_{2} \wedge y|| - ||P^{n}x_{1} \wedge P^{n}x_{2} \wedge y||$$

$$\ge 2 - \delta - ||P^{n}x_{1} \wedge P^{n}x_{2}||,$$

we have

$$||P^nx_1 \wedge P^nx_2|| \ge 2 - ||y|| - \delta.$$

The asymptotic stability of positive contractions acting on ordered vector spaces with base was considered in [14]. The following theorem is a generalization of some results from [11].

THEOREM 1. Let P be a stochastic operator on an AL-space E. If

(B_e), there exists
$$\varepsilon > 0$$
 and $m \ge 0$ such that for every $x_1, x_2 \in E_+$, $||x_1|| = ||x_2|| = 1$, we have $||P^m x_1 \wedge P^m x_2|| \ge \varepsilon$,

then there exists a unique positive normalized $x_* \in E$ and a positive linear functional $A \in E^*$ such that $\lim_{n \to \infty} P^n = A \otimes x_*$ in the norm operator topology (in particular, P is quasi-compact).

Proof. First we observe that for every natural k and normalized $x_1, x_2 \in E_+$ we have

(1)
$$||P^{mk}x_1 - P^{mk}x_2|| \leq (1-\varepsilon)^k ||x_1 - x_2||.$$

For k = 0, inequality (1) is evident. Now by (B_k) we get

$$\begin{split} \|P^{m}x_{1} - P^{m}x_{2}\| \\ &= \left\|P^{m}\left(\frac{x_{1} - x_{1} \wedge x_{2}}{1 - \|x_{1} \wedge x_{2}\|}\right) - P^{m}\left(\frac{x_{2} - x_{1} \wedge x_{2}}{1 - \|x_{1} \wedge x_{2}\|}\right)\right\| (1 - \|x_{1} \wedge x_{2}\|) \\ &= \|P^{m}z_{1} - P^{m}z_{2}\| (1 - \|x_{1} \wedge x_{2}\|) \\ &= (1 - \|x_{1} \wedge x_{2}\|) \|(P^{m}z_{1} - P^{m}z_{1} \wedge P^{m}z_{2}) - (P^{m}z_{2} - P^{m}z_{1} \wedge P^{m}z_{2})\| \\ &= 2(1 - \|x_{1} \wedge x_{2}\|) (1 - \|P^{m}z_{1} \wedge P^{m}z_{2}\|) \\ &\leq 2(1 - \varepsilon)(1 - \|x_{1} \wedge x_{2}\|) = (1 - \varepsilon)\|x_{1} - x_{2}\|, \end{split}$$

where

$$z_1 = \frac{x_1 - x_1 \wedge x_2}{1 - \|x_1 \wedge x_2\|}$$
 and $z_2 = \frac{x_2 - x_1 \wedge x_2}{1 - \|x_1 \wedge x_2\|}$.

Thus, (1) can be obtained by iterating the last inequality. Let $x \in E_+$, ||x|| = 1, be fixed and let k be such that $2(1-\varepsilon)^k < \delta$. Then for every $y \in E_+$, ||y|| = 1, and $n \ge km$ we have

$$\|P^ny-P^{km}x\|=\|P^{km}P^{n-km}y-P^{km}x\|\leqslant 2(1-\varepsilon)^k<\delta.$$

Since δ can be taken arbitrarily small, the trajectory $\gamma(y) = \{P^n y : n \ge 0\}$ is relatively norm compact. Let x_* be a normalized positive P-invariant element in E (the von Neumann Ergodic Theorem guarantees the existence of x_*). By (1), for every $y \in E_+$, ||y|| = 1, we have $||P^{km}y - x_*|| \le 2(1-\varepsilon)^k$ and since the sequence $||P^n y - x||$ is nonincreasing,

$$\sup_{\|y\|=1, y \in E_+} \|P^n y - x_*\| \leq 2(1-\varepsilon)^{[n/m]}.$$

Let $\Lambda(x) = ||x^+|| - ||x^-||$. By the above inequality we get

$$\begin{split} \|P^n - \Lambda \otimes x_*\| &= \sup_{\|y\| = 1} \|P^n y - \Lambda(y) x_*\| \\ &\leq \sup_{\|y\| = 1} \big\{ \|P^n y^+ - \Lambda(y^+) x_*\| + \|P^n y^- - \Lambda(y^-) x_*\| \big\}, \\ &2\sup \big\{ \|P^n y - \Lambda(y) x_*\| \colon y \in E_+, \ \|y\| = 1 \big\} \leqslant 4(1 - \varepsilon)^{[n/m]} \to 0. \end{split}$$

We now consider the asymptotic periodicity of the iterates of stochastic operators. A stochastic operator P acting on an AL-space E is called asymptotically periodic if there exists a finite collection e_1, \ldots, e_r of positive normalized pairwise orthogonal elements of E and $\lambda_1, \ldots, \lambda_r$, positive func-

tionals from E^* , such that $||P^nx - \sum_{j=1}^r \lambda_j(x)e_{\alpha^n(j)}|| \to 0$ as $n \to \infty$ and $Pe_j = e_{\alpha(j)}$, where α is some permutation of the set (1, 2, ..., r). If α is cyclic, then P is called asymptotically cyclic and instead of $\alpha(j)$ we will write j+1 for $j \in \{1, 2, ..., r\}$, and the sum is taken modulo r. The asymptotic periodicity (cyclicity) is a generalization of asymptotic stability, however, the ω -limit sets of trajectories remain still finite. Recall that if a stochastic operator has the so-called weak constrictor (see [5] and [6] for details) then it is asymptotically periodic. For arbitrary Banach latices the asymptotic periodicity of positive contractions has been obtained in [1] (see also [2] and [14]) where strong constrictivity was assumed. The following theorem is a generalization of some results from [2]. We will use results from [3] and [13] concerning the behaviour of P on limit sets. Our definitions and notations agree with [13].

The limit set $\omega(x)$ of the trajectory $\gamma(x) = \{P^n x : n \ge 0\}$ is the set $\{y \in E : \exists n_k \nearrow \infty, P^{n_k} x \to y\}$. It is known (see [3]) that if $\omega(x) \ne \emptyset$ then $\omega(x)$ is a P-invariant minimal subset of $E(y \in \omega(x) \Rightarrow \gamma(y) = \omega(x))$. Moreover, it can be shown that in this case P is an invertible isometry on $\omega(x)$. We denote by Ω the set of all limit points $\bigcup_{x \in E} \omega(x)$. Now we are in a position to formulate the following:

THEOREM 2. Let P be a stochastic operator on a real AL-space E. If for every $x \in E$ the limit set $\omega(x) \neq \emptyset$ and

(C) there exists a natural k such that for each nonzero positive x_1 , x_2 there exist positive n, m with $|n-m| \le k$ such that $P^n x_1 \wedge P^m x_2 \ne 0$,

then P is asymptotically cyclic and the length of the cycle $r \leq k+1$.

Proof. Let $x \in \Omega$. By minimality of $\omega(x)$ there is a sequence $n = (n_k)$ such that $P^{n_k}x \to x$. We set $\Omega(n) = \{y \in E: P^{n_k}y \to y\}$. Clearly, $\Omega(n)$ is a closed linear (nontrivial) subspace of E. Moreover, it is a sublattice of E. In fact, for every $y \in \Omega(n)$ by positivity of P we have $P^{n_j}|y| \ge |P^{n_j}y|$. Since $P|_{\Omega(n)}$ is an invertible isometry (the synchronous argument works here, see [14] for details), we get

$$||P^{n_j}|y|| \geqslant |||P^{n_j}y|| = ||P^{n_j}y|| = ||y|| = |||y|| \geqslant ||P^{n_j}|y||$$

and thus $P^{n_j}|y| = |P^{n_j}y|$ by the AL axiom. The convergence $P^{n_j}|y| \to |y|$ is now a straightforward consequence of the continuity of the modulus $|\cdot|$ (see [12], p. 83). Let y, z be positive normalized elements of $\Omega(n)$. It is easy to notice that (C) implies $y \wedge P^m z \neq 0$ for some $0 \leq m \leq k$. Now we define by induction two sequences $\{y_i\}$, $\{z_i\}$ of nonnegative elements of $\Omega(n)$. Let $y_0 = z_0 = y \wedge z$ and

(2)
$$y_{j+1} = \left(y - \sum_{i=0}^{j} y_i\right) \wedge P^{j+1}\left(z - \sum_{i=0}^{j} z_i\right), \quad z_{j+1} = P^{-(j+1)}y_{j+1},$$

where the inverse P^{-1} is in $\Omega(n)$.

Observe that for every $0 \le m < j$ we have

(3)
$$(y - \sum_{t=0}^{j} y_t) \wedge P^m (z - \sum_{t=0}^{j} z_t) = 0.$$

In fact, since $P^m z_m = y_m$, we have

$$(y - \sum_{t=0}^{j} y_t) \wedge P^m (z - \sum_{t=0}^{j} z_t) \leq (y - \sum_{t=0}^{m} y_t) \wedge P^m (z - \sum_{t=0}^{m} z_t)$$

$$= (y - \sum_{t=0}^{m-1} y_t - y_m) \wedge (P^m (z - \sum_{t=0}^{m-1} z_t) - P^m z_m)$$

$$= (y - \sum_{t=0}^{m-1} y_t) \wedge P^m (z - \sum_{t=0}^{m-1} z_t) - y_m = 0.$$

By assumption (C) and by (3) it follows that $y_{k+1} = y_{k+2} = 0$ and $z_{k+1} = z_{k+2} = \dots = 0$. Therefore, we have proved that for any positive normalized vectors y, $z \in \Omega(n)$ there are sequences $(y_j)_{j=0}^k$, $(z_j)_{j=0}^k$ such that $\sum_{j=0}^k y_j = y$, $\sum_{j=0}^k z_j = z$ and $P^j z_j = y_j$. Now, let us fix a positive normalized $y \in \Omega(n)$. So, for arbitrary positive normalized $z \in \Omega(n)$, we have $z = \sum_{j=0}^k P^{-j} y_j \leqslant \sum_{j=0}^k P^{-j} y$. Since ordered intervals are weakly compact in an AL-space (see [12], p. 119), the unit ball of $\Omega(n)$ is weakly compact. In particular, $\Omega(n)$ must be finite-dimensional as the reflexive AL-space (see [12], Corollary 2, p. 128).

Let positive normalized pairwise orthogonal e_1, e_2, \ldots, e_s form a base in $\Omega(n)$. Since e_i 's are extremal in B_1^+ (the nonnegative part of the unit ball of $\Omega(n)$) and $P: B_1^+ \to B_1^+$ is affine and invertible, there exists a permutation β of the set $\{1, 2, \ldots, s\}$ such that $Pe_t = e_{\beta(t)}$. It follows that for every $y = \sum_{t=1}^{s} \lambda_t(y)e_t$ we have $Py = \sum_{t=1}^{s} \lambda_t(y)e_{\beta(t)}$, where the coordinates λ_t are clearly nonnegative functionals. Consequently, for some $d = d(n) \ge 1$ the identity $P^d|_{\Omega(n)} = \mathrm{Id}|_{\Omega(n)}$ holds. Let $\Omega(n)$, $\Omega(n')$ be two sublattices corresponding to $x, x' \in \Omega$, respectively. It is easy to see that $P^d|_{\mathrm{sp}(\Omega(n),\Omega(n'))} = \mathrm{Id}|_{\mathrm{sp}(\Omega(n),\Omega(n'))}$ for

d = d(n)d(n'). In particular, we have span $(\Omega(n), \Omega(n')) \subseteq \Omega((jd)_{j=0}^{\infty})$, so $\dim \{ \operatorname{span}(\Omega(n), \Omega(n')) \} \leqslant k+1$. It follows that Ω is a finite-dimensional sublattice of E, $\dim \Omega \leqslant k+1$. By e_1, e_2, \ldots, e_r we denote a normalized positive pairwise orthogonal base in Ω . Arguing as before, we can show that there is a permutation α of the set $\{1, 2, \ldots, r\}$ such that $Pe_t = e_{\alpha(t)}$. Our condition (C) implies that it must be one-cyclic and $\alpha(j) = j+1 \pmod{r}$.

Now, for each $x \in E$, there exist a sequence $n_k \to \infty$ and coefficients $s_1(x), \ldots, s_r(x)$ such that

$$(4) P^{n_k} x \to \sum_{j=1}^r s_j(x) e_j.$$

Choosing a subsequence of the form $n_{k_j} = k_j r + p$, the convergence (4) can be rewritten as follows:

$$\begin{split} \left\| P^{n_{k_j}} x - \sum_{j=1}^r s_j(x) e_j \right\| &= \left\| P^{n_{k_j}} x - \sum_{j=1}^r s_j(x) P^{k_{j^r}} e_j \right\| \\ &= \left\| P^{n_{k_j}} x - P^{n_{k_j}} \left(\sum_{j=1}^r s_j(x) e_{j-p} \right) \right\| = \left\| P^{n_{k_j}} \left(x - \sum_{j=1}^r s_{j+p}(x) e_j \right) \right\| \to 0. \end{split}$$

Since P is a contraction, for every $x \in E$ there exists a collection of scalars $\lambda_1(x), \ldots, \lambda_r(x)$ such that $||P''(x - \sum_{j=1}^r \lambda_j(x)e_j)|| \to 0$. To finish the proof we only have to show that $\lambda_j \in E_+^*$. The positivity of λ_j 's is a simple consequence of the positivity of P. Let $x, y \in E$ be arbitrary. Since

$$0 = \lim_{n \to \infty} P^{n}(x + y - \sum_{j=1}^{r} \lambda_{j}(x + y)e_{j})$$

$$= \lim_{n \to \infty} \left(P^{n}(x - \sum_{j=1}^{r} \lambda_{j}(x)e_{j}) + P^{n}(y - \sum_{j=1}^{r} \lambda_{j}(y)e_{j}) + P^{n}(\sum_{j=1}^{r} (\lambda_{j}(x) + \lambda_{j}(y) - \lambda_{j}(x + y))e_{j}) \right),$$

the third component must converge to 0. Therefore,

$$\left\| \sum_{j=1}^{r} \left(\lambda_{j}(x) + \lambda_{j}(y) - \lambda_{j}(x+y) \right) e_{j} \right\|$$

$$= \lim_{n \to \infty} \left\| P^{n} \left(\sum_{j=1}^{r} \left(\lambda_{j}(x) + \lambda_{j}(y) - \lambda_{j}(x+y) \right) e_{j} \right) \right\| = 0.$$

By the linear independence of the vectors e_j 's we get the additivity of λ_j 's. Clearly, the homogeneity of λ_j is a straightforward consequence of the linearity of P.

COROLLARY 2. Let P be a stochastic operator on an AL-space E. If for every $x \in E$ the limit set $\omega(x) \neq \emptyset$ and for every $0 \neq x_1, x_2 \geqslant 0$ there exists $n \geqslant 0$ such that $P''x_1 \wedge P''x_2 \neq 0$, then P is asymptotically stable.

Proof. It is enough to observe that if in Theorem 2 the parameter k is taken to be 0, then the dimension of Ω is exactly 1, so r = 1.

Remark 4. In Theorem 2 above, condition (C) cannot be replaced by the following weaker one:

(C') for every nonzero x_1 , $x_2 \in E_+$ there exist $n \ge 0$, $m \ge 0$ such that $P^n x_1 \wedge P^m x_2 \ne 0$,

even we additionally assume that every trajectory $\gamma(x)$ is relatively norm compact. In fact, let $\tau = \exp(2\pi is)$ for some irrational $s \in R$ and let T be the unit circle. Clearly, $P_{\tau}f(z) = f(\tau z)$ is a strongly almost periodic stochastic operator on $L^1(T)$. For this it is enough to observe that $\{P^nf\}$ is relatively norm compact in C(T) if f is continuous, and that the imbedding $C(T) \hookrightarrow L^1(T)$ is continuous. Next notice that every power P^k is ergodic, so the space of periodic vectors in $L^1(T)$ contains only constants. Clearly, for every $f \in L^1(T)$ and every $r \in R$ we have $\|P^n(f-r1)\|_{L^1} = \|f-r1\|_{L^1}$ so, if f is not constant, then it cannot be approximated by periodic vectors. Finally, note that Ω is the whole space $L^1(T)$ and that condition (C') is satisfied. In fact, let $f, g \in L^1_+(T)$ be arbitrary nonzero elements. If $P^n f \land P^m f = 0$ for every n, m, then

$$N^{-1}\sum_{j=0}^{N-1}P^{j}f\perp N^{-1}\sum_{j=0}^{N-1}P^{j}g,$$

so there would be two orthogonal f, $\bar{g} \in Fix(P)$. But this contradicts the ergodicity of P.

References

- [1] W. Bartoszek, Asymptotic periodicity of the iterates of positive contractions on Banach lattices, Studia Math. 91 (1988), 179-188.
- [2] -, Asymptotic stability of the iterates of positive contractions on Banach luttices, Proceedings of the International Conference on Function Spaces, Poznań 1986, Teubner Texte zur Math. 103, 153-157.
- [3] C. M. Dafermos and M. Slemrod, Asymptotic behaviour of nonlinear contraction semigroup, J. Funct. Anal. 13 (1973), 97-106.
- [4] S. Kakutani, Concrete representation of abstract L-spaces and the mean ergodic theorem, Ann. of Math. 42 (1941), 523-537.
- [5] J. Komornik, Asymptotic periodicity of the iterates of weakly constrictive Markov operators, Tôhoku Math. J. 38 (1986), 15-27.
- [6] and E. G. F. Thomas, Asymptotic periodicity of Markov operators on signed measures (preprint).
- [7] U. Krengel, Ergodic Theorems, Berlin, New York 1985.
- [8] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, 1974.

- [9] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384.
- [10] A. Lasota, T. Y. Li and J. A. Yorke, Asymptotic periodicity of the iterates of Markov operators, ibidem 286 (1984), 751-764.
- [11] T. A. Sarymsakov and N. P. Zimakov, Ergodic principle for the Markov semi-group in ordered normal spaces with basis (in Russian), Dokl. Akad. Nauk SSSR 289 (3) (1986), 554-558.
- [12] H. H. Schaefer, Banach Lattices and Positive Operators, 1974.
- [13] R. Sine, Recurrence of nonexpansive mappings in Banach spaces, Contemporary Math. 18 (1983), 175-200.
- [14] -, Constricted systems (preprint), 1986.

PIASKI 57 98-360 LUTUTÓW WOJ. SIERADZ, POLAND

Reçu par la Rédaction le 23.05.1988