Sur un problème de Jenkins pour les fonctions convexes

par Z. Bogucki (Radom) et J. Zderkiewicz (Lublin)

Résumé. Désignons par S^c la famille des fonctions $f(z)=z+a_2z^2+\ldots$, analytiques et univalentes dans le cercle-unité K et satisfaisant dans celui-ci à la condition $\operatorname{Re}\left[1+\frac{zf''(z)}{f'(z)}\right]>0$. Considérant comme fixés le nombre r, 1/2< r<1 et la fonction $f\in S^c$, désignons par $L_f(r)$ la mesure angulaire de Lebesgue des points de la circonférence |z|=r qui ne sont pas recouverts par les valeurs de la fonction f et soit $L(r)=\sup_{f\in S^c}L_f(r)$. Puisque la fonctionnelle $L_f(r)$, est semi-continue supérieurement et que la classe S^c est compacte, il existe une fonction $f_0\in S^c$ telle que $L(r)=L_{f_0}(r)$. Admettant que $K_r\subset f_0(K)$, on détermine dans ce travail la fonction f_0 .

1. Désignons par S la famille des fonctions $f(z) = z + a_2 z^2 + ...$, analytiques et univalentes dans le cercle K_1 , où $K_r = \{z : |z| < r\}$, et posons

$$S^* = \left\{ f \in S \colon \operatorname{Re} \frac{zf'(z)}{f(z)} > 0, \ z \in K_1 \right\},$$

$$S_a = \left\{ f \in S \colon \left| \operatorname{arg} \frac{zf'(z)}{f(z)} \right| < a \frac{\pi}{2}, \ 0 < a < 1, z \in K_1 \right\},$$

$$S^c = \left\{ f \in S \colon \operatorname{Re} \left[1 + \frac{zf''(z)}{f'(z)} \right] > 0, \ z \in K_1 \right\}.$$

Dans le travail [2] J. A. Jenkins a formulé et résolu le problème suivant:

Admettant que R est un nombre fixé, 0 < R < 1, et que $f \in S$, désignons par $L_f(R)$ la mesure angulaire de Lebesgue de l'ensemble des points de la circonférence |w| = R qui ne sont pas recouverts par les valeurs de la fonction f. Déterminer

$$L(R) = \sup_{f \in S} L_f(R).$$

Pour les classes S^* et S_a ce problème a été résolu par Z. Lewandowski dans [3] et par J. Stankiewicz dans [5]. Dans chacun des cas mentionnés le problème a été résolu au moyen de la symétrisation circulaire, en profitant du fait que la fonction symétrisée appartient, après avoir été normée,

à la famille considérée et que la symétrisation augmente le rayon conforme intérieur du domaine. Cette méthode ne saurait être étendue d'une façon analogue à la classe S^c , puisque, en général, la symétrisation circulaire ne conserve pas la convexité.

Observons, cependant, que dans le cas des classes S, S^* , S_a l'égalité dans (1) est réalisée par les fonctions f_0 ayant la propriété

$$(2) K_R \subset f_0(K_1).$$

Les auteurs de ce travail supposent (bien qu'ils n'en aient pas de démonstration complète) que pour la classe S^c la fonction extrémale f_0 a aussi la propriété (2).

Or, si l'on fait sur la fonction f_0 cette hypothèse supplémentaire, on peut la déterminer au moyen de la symétrisation circulaire. En effet, nous démontrerons dans ce travail le

THÉORÈME. Soit $\frac{1}{2} < R < 1$. Si $K_R \subset f_0(K_1)$ et si a lieu l'égalité

(3)
$$L(R) = \sup_{f \in S^c} L_f(R) = L_{f_0}(R),$$

la fonction $f_0 \in S^c$ et représente le cercle K_1 sur un domaine convexe G_0 , dont la frontière est la somme d'un arc de circonférence l d'équation |w| = R et de deux demi-droites (ou segments de droite) tangentes à l en ses extrémités.

2. Nous dirons que le domaine G appartient à la famille U_R si et seulement s'il est convexe, son rayon conforme intérieur est r(0, G) = 1 et $K_R \subset G$. Il est évident que pour tout domaine $G \in U_R$ il existe une fonction $f \in S^c$ telle que $f(K_1) = G$.

Désignons par $\tilde{L}_G(R)$, $G \in U_R$, la mesure angulaire de Lebesgue de l'ensemble des points de la circonférence |w| = R qui n'appartiennent pas à G et soit

(4)
$$\tilde{\boldsymbol{L}}(R) = \sup_{G \in U_R} \tilde{\boldsymbol{L}}_G(R).$$

Évidemment, sous les hypothèses du théorème on a $L(R) = \tilde{L}(R)$.

Démonstration du théorème. L'existence du domaine $G_0 \in U_R$ est évidente. Supposons maintenant que dans la famille U_R il existe un domaine $G_1 \neq G_0$ tel que

(5)
$$\tilde{L}_{G_1}(R) \geqslant \tilde{L}_{G_0}(R).$$

Il suffit de se borner au cas où la frontière du domaine G_1 est la somme d'arcs de la circonférence |w| = R et de segments de droite (en y ajoutant peut-être deux demi-droites), tangents aux extrémités de ces arcs.

Désignons par η la mesure angulaire des arcs de la circonférence |w| = R qui appartiennent à G_1 , par β la mesure analogue pour G_0 . En vertu

de (5) on doit avoir $\beta=\eta$. Symétrisons maintenant les domaines G_1 et G_0 par rapport au demi-axe réel positif. Le domaine G_0 se transformera dans cette symétrisation en lui-même (puisque la symétrisation est circulaire). Nous allons montrer que le domaine G_1^* , qui est l'image de G_1 après la symétrisation, est contenu dans G_0 . En effet, considérons un R_1 quelconque, $R < R_1 < 1$, et désignons par a_i , i = 1, 2, ..., n (n - doit être fini) la mesure angulaire du *i*-ème arc de la circonférence $|w| = R_1$ appartenant à G_1 , et par G_i la mesure analogue pour la circonférence |w| = R. Alors

$$a_i = \beta_i - 2 \arccos R/R_1$$
.

Par conséquent la mesure angulaire totale δ des arcs de la circonférence $|w| = R_1$ qui appartiennent à G_1 est égale à

$$\delta = \sum a_i = \eta - 2n \arccos R/R_1.$$

Désignant par γ la mesure angulaire de l'arc de la circonférence $|w|=R_1$ qui appartient à G_0 , on a

$$\gamma = \beta - 2 \arccos R/R_1.$$

De (6) et (7) on conclut que G_1^* est essentiellement contenu dans G_0 si n > 1, et comme $r(0, G_1^*) \ge r(0, G_1)$ [1], G_1 n'appartient pas à la famille U_R , contrairement à l'hypothèse, ce qui achève la démonstration.

Nous allons maintenant déterminer la fonction f_0 .

On voit aisément que le domaine G_0 admet un axe de symétrie. Supposons (en effectuant au besoin une rotation) que le demi-axe réel négatif partage en deux parties égales l'arc de la circonférence |w| = R qui n'appartient pas à G_0 .

Soit $f_0(K_1) = G_0$. Désignons par L_1, L_3 les demi-droites (resp. les segments de droite) qui appartiennent à la frontière de G_0 , et par L_2 l'arc de la circonférence |w| = R qui appartient à cette frontière. Alors $L_i = f_0(l_i)$, où $\bigcup l_i$ est la circonférence |z| = 1.

Soit $\pi(2-\theta)$, $0 < \theta < 2$, la mesure de l'angle au centre qui intercepte l'arc L_2 .

Considérant la fonction $F(z) = zf'_0(z)$ on constate que $|\arg zf'_0(z)|$ = const sur les arcs l_1 et l_3 et que $|zf'_0(z)|$ = const sur l'arc l_2 , et que sur cet arc on a $|\arg zf'_0(z)| \leq \frac{1}{2}\pi(2-\theta)$. Par conséquent la fonction F(z) représente le cercle K_1 sur un domaine symétrique par rapport à l'axe réel, $F(l_1)$ et $F(l_3)$ étant des demi-droites dont les prolongements passent par le point w=0. D'autre part, $F(l_2)$ est un arc de la circonférence |w|=r, de mesure angulaire $\pi(2-\theta)$, joignant les origines de ces demi-droites. On a donc

$$F(K_1) = D = \{w \colon |\arg w| < \theta \frac{1}{2}\pi\} \cup \{w \colon |w| < r\}.$$

Dans le travail [4] (p. 579) on a trouvé la représentation du cercle K_1

sur un domaine homothétique du domaine D; on en déduit aisément la fonction F. Cette fonction est de la forme

$$F(z) = rac{4}{(2+ heta)^{ heta}} rac{[heta(1+z)+2g(z)]^{ heta}}{[1+z+g(z)]^2} rac{z}{(1-z)^{ heta}},$$
 $g(z) = \sqrt{1+(heta^2-2)z+z^2}, \quad 0 < heta < 2,$

où

$$r = 4[(2-\theta)^{2-\theta}(2+\theta)^{2+\theta}]^{-1/2}$$
.

Par conséquent

$$f_0(z) = \int_0^z \frac{F(u)}{u} du,$$

les nombres R et θ étant liés par la relation

(8)
$$-R = f_0(-1) = \int_0^{-1} \frac{F(u)}{u} du.$$

Posant

$$x = \frac{\theta(1+u) + 2\sqrt{1 + (\theta^2 - 2)u + u^2}}{1 - u}$$

on obtient

$$R = R(\theta) = \frac{16\theta}{(2+\theta)^{\theta}(2-\theta)^{2}} \int_{\sqrt{4-\theta^{2}}}^{2+\theta} x^{\theta} \frac{x^{2}+4-\theta^{2}}{[x^{2}-(\theta+2)^{2}]^{2}} dx.$$

Remarque. Les cas limites R(0) et R(2) se déduisent aisément de (8). Ainsi on a: R(0) = 1, $R(2) = \frac{1}{2}$.

Bibliographie

- [1] W. K. Hayman, Multivalent functions, Cambridge Univ. Press, 1958.
- [2] J. A. Jenkins, On values omitted by univalent functions, Amer. J. Math. 2 (1953), p. 408-408.
- [3] Z. Lewandowski, On circular symmetrization of starshaped domains, Ann. Univ. Mariae Curie-Skłodowska 17 (1963), p. 35-38.
- [4] T. Sheil-Smail, Starlike univalent functions, Proc. London Math. Soc. 21 (1970), p. 577-613.
- [5] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions a-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska 20 (1969), p. 59-83.

Reçu par la Rédaction le 27. 4. 1977