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Introduction

The integral studied in the present paper is a generalization of the

one-dimensional Perron integral. We call it an H-integral and denote by
b
(H) j' fdt, where H specifies a system of pointed intervals used in the definition.

a
The integral is defined as a certain limit of the sums

S(f, 4) = Z, f(tj)(xj_xj—l)v

where x, <a=1t, <x, <t, < ... <x-; <t =b < x,. The intervals [x;_,,

x;] forming a covering (rather than a partition) of the interval [a, b], the

integral has some unexpected properties. For example, it is possible that
b

(H) j fdt exists but (H) I fdt does not for some ce(a, b). For some choices of the

set H we have (H) j dx/x =

In our paper [4] such examples were presented and the transformation of
the integral for a special choice of the set H was discussed. In the general case,
the main results were given without proofs. The aim of the present paper is to
give brief proofs of the results announced in [4], Section 3.

1. Preliminaries

Let [a, b] be an interval. Then any [fnite set

4= {(tj, [xj—ls x_’])s,]= 1, veny k}
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such that
Xog <l =a<X;<t,<..<b_ <X_;<t=b<x,

is called a covering of [a, b].
If 4 is a gauge on [a, b], te, o: [a, b] = (0, + ), and

[xj—lixj]CB(tj9 6([_,)), j= 1"'-a k’

then 4 is saild to be J-fine. (Here and in the sequel, B(t,r)
=(t—r,t+r))

Write
J =J[a, b] = {(t,[x, y]); te[a, b], x < t <y},
Sym = Sym[a, b] = {(t,[x, yDeJ; t = 3(x+y)}.
Let H = Hfa, b] be a set such that Sym <« H < J and

(1) for every (¢t,[x, y]) € H there is £ > 0 such that (t,[x+h, y—h])e H for
every h, |h| < &

A covering 4 such that 4 ¢ H will be called an H-covering.
1.1. Remark. Let K>0, ¢ > | be constants. Then
ASko = {(t,[x, y)eJ; 0 <t—x < y—t+K(y—1)?,0 < y—t < t—x+K({—x)?}
satisfies Sym — ASg, = J and has property (1). (Cf. [4], Note 3.2
1.2. Remark. Given a set
E={(r,[&-1, &) i=1,....,} cH
and a gauge J on [71,, 7,] such that
o<t <& <1< ...<y_ <&y <<, [E-y, &)< B(x, 6(t))
then there exists # > 0 such that
oth<t, <& ~h<t,<...<t-y <& ((—D"'h<t<&+(=1h,
oy +(= 17 h, &+ (=1)'h] = B(x;, 6(¢)

fori=1,..., ! provided |h| < n. (This follows from (1) and from the fact that
Z 1s finite.)
The set

Eh = {(Tb [éi—l +('_' I)i‘lh, é,+(_l)lh]), i= 1, chey l}

will be called an h-modification (or briefly a modification) of the set Z.
In particular, if = is a é-fine H-covering of [a, b], then its h-modification
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(with h sufficiently small) is a d-fine H-covering of [a, b] as well. This fact will
be frequently used in the proofs throughout the paper without further notice.
2. Definition and main properties of the H-integral

2.1. DerFINITION. A function f: [a, b] — R is called H-integrable (on [a, b])
if there is g€ R such that for every ¢ > 0 there is a gauge J on [a, b] such that

lg—S(f, 2 < ¢
for every d-fine H-covering A of [a, b], where

S, 4) = Z S Mx;—x5- 1)

The number q is the H-integral of f over [a, b] and we write

q=(H)[f(t)dt = (H) [ dr.

2.2. Remark. If H = J, then the H-integral is the Perron integral. Indeed,
let f: [a, b] = R, yeR. It is well known (cf. [2], Section 1.2; [3], Theorem 3.5;
[1], Appendix A, Proposition 4.3) that the Perron integral of f exists and

b

y = (P) j fdt iff for every € > 0 there exists such a gauge 6 on [a, b] that

k
= X Sle)x—x;- ) < e

holds for every sequence
(%) a=x,<t, <x, < ...<x <L, <x,=b
satisfying

£i—0(t) < xj—y, Xx;<t;+0(t)).

It can be assumed without loss of generality that a < t—3(¢), t+4(t) < b for
te(a, b), so that we have in addition ¢, =a, t, = b. It i1s not difficult to prove
that the same concept of integral is obtained if (x) is replaced by

Xo<a=1t <X, < ... <X <l =b<x,
and this modified concept is at the same time the H-integral for H = J.

2.3. PROPOSITION. A function f is H-integrable if and only if for every ¢ > 0
there is a gauge 6 such that

IS(f, 4)—=S(f, 4)l < ¢
for any two o-fine H-coverings A, 4,.

Proof is standard.
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24. Remark. Let ¢ be a gauge on [a, b], let de(a, b). The point d is said
to be d-reachable from a (more precisely, 6-H-reachable from a) if there is a set

9 = {(ai9 [‘gi—la 91]); = 1a ey m} cH
such that
<o, =a<93,<0,<...<p_ <0,<9,=4d,
2) [9:-1, 9:1 = B(s;, 3(c).

(Notice that 0 is a covering of [a, a,,] but not of [a, d])
Similarly, d is called d-reachable from b if 0 satisfies (2) and

d=9,<0, <9 <0,<...<%_1<0,=b<3,.

The set 0 will be called a d-chain from a to d (or, as the case may be, from b to
d). Lemma 2.4 [4] asserts that the set of points de(a, b) which are not
o-reachable from either a or b is at most countable.

Indeed, let s be the supremum of all c e (a, b) such that in (a, c) there are at
most countably many points not é-reachable from a. We have s > a + 8(a) since
every xe(a,a+d(a)) is o-reachable from a (it suffices to put 9, =2a—
x <6,=a<38, =x). Assume s < b. Then in the interval (s, min(s+(s), b))
there exist uncountably many points not J-reachable from a. Let x be such
a point. Then y =s—(x—s) =2s—x cannot be d-reachable from a since
otherwise we could extend the corresponding chain from a to y by the pair
(s, [2s—x, x])e Sym, thus obtaining a d-chain from a to x. But there are only
countably many points y < s not d-reachable from a, which is a contradiction.

2.5. Remark. It follows from [4], Lemma 2.3 or from Remark 2.4 above
that for every gauge & there exists a d-fine H-covering. In fact, there always
exists a d-fine Sym-covering. Indeed, by Remark 2.4 we can find a point
d, b—4(b) < d < b, which 1s 4-Sym-reachable from a. By adding the element
(b, [d, 2b—d]) to the corresponding chain we obtain a J-fine Sym-covering of

[a, b].

2.6. THEOREM. Let f: [a, b] — R be H-integrable. Denote by E = E  the set
of all ce(a, b) such that f |, is not H-integrable. Then E is at most countable.

Proof. Set ¢; = 277 and find the corresponding gauge d; from the

b
definition of the H-integral (H) [f dt. Denote by W, the set of all points

ce(a, b) which are not d-reachable from either a or b, and put W= U W,. By
j=1
Remark 2.4 the set W is at most countable. ’
Let ce(a, )\W. Then (H) [f dt exists.

Indeed, let ¢ > 0. Find j such that 3¢ > 27/ Since c is d,-reachable from
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b, there exists a set
0={(o;, [ui-,u;i=1,....m}cH
such that
C=1uy <0, <U <0, <... <a,,,_1.<um_1<am=b<u,,,,
[4:-1, u;] = B(oy, 6,(0))).
For this set, find n > 0 such that its every h-modification with 0 <h <7 is

a 6;fine H-covering of [g,, b] (cf. Remark 1.2).
Further, choose h, 0 < h <n, so that

2h Y |f (o)l <277,

i=1
and a gauge Sj such that
8,(t) <min(6,(r), c=t) fora<t<ec,
5,(c) < min(h, 6,(c)),
Sj(t) = 0,(t) for c <t <b.
Let 4!, 4% be Sj-ﬁne H-covering of [a, c] where .
AP = {(e?, [x2-,, X2 j=1,...,k,}, p=1,2.

Write », = xf —c; then 0 < x, < h. Construct »,-modifications of the set
6 for p = 1, 2, and denote them by 0*, 6>. By the choice of 4 and 9;, the sets
A v 6P, p=1,2, are é;-fine H-covering of [a, b]. Evidently,

S(f, 47 L 07y = S(f, A7)+ S(f, 67)

and
ISU, 09— S(F, 09 = | 3. F@)(ts+ (= Doey — g —(— 1) 1z,)
i=1
_(ui+(— l)ixz_“i—l —(— l)i—lxz)]l
< Y1260 —x) < 20 3 Uffo < de.

Consequently, we have
IS(f, 4 =S(f, 4% < IS(f, 41 v 0Y)—S(f, 42 L )\ +IS(f, 01)=S(f, ) <z,
and the desired integrability (over [a, c]) follows by Proposition 2.3.

2.7. THEOREM. Let a < c < b and let two of the integrals in the equality

c b b
(3) (H)[f dt+(H)[f dt = (H)(f dt

14 — Annales Polonici Mathematici LI
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exist. Then the third integral exists as well and the equality holds.

Proof. Consider the case where the first and the last integral exist. Let
¢ > 0, and find gauges J,, J, on [a, c], [a, b], respectively, corresponding to
¢ in the sense of Definition 2.1. Without loss of generality we can and will
assume that

0,(t) <6,(t) for te[a,c],
0,(0) < |t—c| for te[a, b]\{c},

2f(c)l6,(c) <.
Let 4 be a é,-fine H-covering of [c, b], where

A={tplx;-, xDsj=1,..., k}.

Let h > 0 be such that the h-modification 4, of 4 is a é,-fine H-covering of
[c, b], and x,+h is J,-reachable from a. (Existence of such an h follows from
Remarks 1.2 and 2.4.) Moreover, let h be so small that

k
2h Y 1f(t) <s.
j=1
Let @ be the first set from Remark 2.4 with d = x,+h and é = §,. Then the set

fu 4, 1s a ,-fine H-covering of [a, b], and the set 6 U {(c, [xo+h, x, —h])} is
a 0,-fine H-covering of [a, c]. Consequently,

|SC, A)—(H) [ fde+(H) [fde| < [S(f, )—S(f, 4,)
+|S(f, 0u{(c, [xo+h, x, —h])})—(H) [ dt
b
/@Ol —h—xo—h)+IS(f, 00 4,)—(H)ffdt]

k
<20 Y If @) +e+21f(@16,()+5 < 4e
=1

J

b
which proves the existence of the integral (H) j f dt as well as the validity of

equality (3).
Proofs of the other cases are analogous.

b
2.8. Remark. Let (H) [f dtexist, let ¢, de[a, b],c < d.If ¢, de[a, B]\E,
¢ d d
then by Theorems 2.6, 2.7 the integral (H) [f dr exists. Conversely, if (H) [f dt

exists, then by Theorem 2.6 there is T€(c, d) such that the integrals (H){f dt

a
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and (H) [f dt exist, and by Theorem 2.7 we obtain c¢ E and similarly d¢ E.

3. Indefinite H-integral and its properties
In this section let f: [a, b] > R be H-integrable, and define

F@=0, F(@)= (H)if(s)ds for te[a, b]\E,

where E is the (at most countable, cf. Theorem 2.6) set of points c e(a, b) such

that (H){f dt does not exist.

3.1. THEOREM. The function F is continuous on [a, b]\E.

Proof. Let ce[a, bJ\E, let (c,) be an increasing sequence, c,¢E,
limc, =c. Let ¢>0. Find the gauge 6 on [a, c] corresponding to the

n—a

definition of the integral (H)[f dt, assuming without loss of generality that

4) oty <c—t for t<c, |f(0)d(c)<e.

Let k be such an integer that ¢, > c—d(c). Let §, be the gauge from Definition

(43

2.1 corresponding to ¢ and (H) { f dt. Without loss of generality let us assume

that ,(t) < 4(¢) for te[a, c,]. Let 4 be a d,-fine H-covering of [a, ¢, ] whose
last element is (c,, [xx-1, X, ]). We have x, <c by (4). Hence Adu
{(c, [x4, 2c¢—x,])} is a O-fine covering of [a, ¢]. Consequently,

](H)}f dt—(H)Cff di| < I(H)}f dt—S(f, 4u {(¢, [x, 2e=xD)})|

+1/(0)|26() + IS (., A)—(H)cf J di] < 3,

which proves the theorem.
Before formulating a converse result, we will prove the version of the
Saks—-Henstock lemma corresponding to the H-integral.

3.2. TueoreM (Saks-Henstock lemma). Let f: [a, b] — R be H-integrable,
€ > 0. Let 6 be the gauge from Definition 2.1 and let

(5) {t, up v j=1,....,k} c H
satisfy
(6) (u;, v;] = B(t;, 4(t);

(7 AU <<, SU <L <L <P KUY <L <p <b
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and u;, v;¢ E for j=1,..., k. Then

vj

(8) Y (H) | di=1)o—u)) <e.

y Uy

Proof. Let us first make two remarks. First, we may and will assume,
without loss of generality, that all inequalities in (7) are strict. Indeed, we can
pass from the points u;, v; to u; > u;, v; <v; so that conditions (5}(7) are
fulfilled with the new points, and the “error” made by replacing u;, v; by uj, v]
on the left-hand side of (8) is arbitrarily small. Second, notice that by Remark
2.8 the H-integrals of f over [u;, v;] and [v;, u;, ] existforj=1,..., k (k—1,
respectively). :

Since the proof of Theorem 3.2 is technically rather complicated, we first
prove a lemma.

3.3. LEMMA. Let 9, t;, u;, v; be from Theorem 3.2, let ¢ > 0. Then there

exists a o-fine H-covering Q of [a, b],
Q = {(tii [wi‘l’ w:]); l= l, LR ] l}
and integers 0 <m; <m, < ... < m, such that
9) Tmy = U < Wy < Tyt = < Oy <V = Tyi42,
(ij—uj = Dj—w,,,j+1 < 0.
Proof. Denote s; = 3(v;+u;.,) for j=1,...,k—1, s, = b. Set
8'(s;—A) = &'(s; 4+ A) = min(3(s;— A), d(s;+ 1)
for 0<A<s;—v,j=1,...,k-1,
0'(t)=d(t) otherwise, te[a, b].
For j=1,...,k—1 find ¢,, 0 <0, < &(s)) such that
v;<5;—0;<s;+0;<uj+, and s;—0;,5;4+0;¢ E
(cf. Theorem 2.6). Then there exists h, 0 < h < g, satisfying
h <&y, [uj,v])  (cf (1), h<s;—o;—v;, h<d@u), h<d()

forj =1, ..., k, and such that the points v;+ h are &'-reachable from s;—o; and
u, —h is ¢'-reachable from a (cf. Remark 2.4).

Now we will construct the desired covering.

By the choice of h there exists a ¢’-chain from a to u, —h; let it consist of
points

Wos Ty =qys Byyeeey Tmy—1, Omy—1 = U;—h.

Put 1, =u;, Op, =U;+h, Tms1 =1, Op+1=0;,—h, Tp42="0;, Op, +2
= v, +h. Again by the choice of h, the last point is &'-reachable from s, —a,.
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Suppose we have found the points of 2 up to a point wWp;+, =v;+h in
such a way that (9) is fulfilled. Then there is a &’-chain from s;—06; t0 Wp;+ 2,
and a “symmetric” chain from s;+¢; to u;, , —h. (Here “symmetric” means that
the points of the latter chain are symmetric about s; to the corresponding
points of the former.) The two chains together with the element (s;,[s;—a}, s;
+0;])eSym c H filling the gap between them extend our construction up to
the point ujy;—h = p,,,—1. POl 1,  =Uj1, Op,,, =ujs1+h, Tm,, +1
=lj+1> Omy,y 41 = Vjr1—h, Ty 42 =Ujr1, Omy,,+2=0j+1+h. Thus we
have proceeded from step j to step j+ 1 in our construction. Repeating the
procedure, we extend the covering Q2 to the whole interval [a, b]. It is seen
directly from the construction that Q has the required properties.

34. Proof of Saks-Henstock lemma. Let # > 0. Find gauges ¢; on
[v;, u;44] for j=0,1,..., k (denoting v, = a, u, = b) such that

Ui+t

(10) (H) § f de—S(f, @) < nftk+1)

for every ~(pj-ﬁne H-covering @; of [v;, uj4+,].
Let o be a gauge on [a, b] such that
5(t) < 8(2) for tela, b],
5y <t~ul for t#u,
Sy <lt—v for t#uv,
S <o for  telvyupl,
6(u) < 8(t)—(t;—u), 8wy <d(t)—(v;—t);
max (6(u;), 6(v)) < & = &t [u;, v)])
(with ¢ from formula (1)), and
Su)If ) < n/2(k+1),
SIS (&)l < n/2(k+1).

Let  be the partition from Lemma 3.3 (corresponding to the gauge § instead
of §). Since Q is a dé-fine H-covering of [a, b] we have

b
(H) [ f(®)de—S(f, Q)| <e.
" Further, denote
¢J = {(TP’ [wp_l’ wp]); p = mJ+2) ml+3’ vy mj+1},
j=03 1) ceey ka mO = —1, My = 1,

Then @; is a ¢;-fine H-covering of [v;, u;.,] and hence satisfies (10). Obviously
we have
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Py H)vffdr 1 (6)0,~) = (H)]f de—S(f, 2
Z (H)“j.*‘f dt—S(f, ®)))— Z SUYv;— Oy 4 — 4 @),

and consequently,
k v;
| S AH) [ f dt—f(t)(v;,—u))| < &+2n.
j=1 uj

Since n >0 has been arbitrary, the proof is complete.

3.5. Remark. The assertion of the Saks—Henstock lemma can be modi-
fied to

k

3 |[Fo)—Fu)~£(t)(0;—u)| < 2¢

ji= 1

This is obtained by dividing the set of (¢;, [u;, v,]) in two groups according to
the sign of the corresponding summand, and applying the lemma in the
original form to each group separately.

Now we can prove a converse of Theorem 3.1.
3.6. THEOREM. Let f- [a, b] = R be H-integrable de(a, b). If there exists
a finite limit lim F(c) = ge R for ce(a, d)\E, then (H) j f dt exists and equals q.

c’d

Proof. Let ¢ > 0 and let & be the gauge on [a, b] corresponding to ¢ and
b
(H) {f dt. Let § be a gauge on [a, b] such that

21f(@)b(d) <e, 2@ <e,
|[F(x)—q| <& for any x¢E, d—6(d)<x<d,
IF(x)] <& for any x¢E, a<x<a+d(a)
(cf. Theorem 3.1),
5(x) < 6(x) for all xe([a, b].
Let A be a é-fine H-covering of [a, d], where
A={t; [xj-1, x]), j=1,..., k}.
Find a J-fine modification 4, (cf. Remark 1.2) such that x)=
X;+(—1}"'"Jh¢E for j=1,...,k, h>0 and

(11)

fE)l <e.

N

-
‘~I.
i
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By the Saks-Henstock lemma we have
(12) Iki: (f (¢ )x;—x;-1)—(H) f fdi) <e.

j= xj-1
Consequently, using (11), (12) and the properties of the gauge & we obtain

k k
| Y fu)x—x-)—q| Se+| Y f(t)xj—x;-1)—4g|
j=1 i=1

k—1 xj
< e+28@)If (@ +] Y UE)x;—x5-)—(H) | f dr]
j=2 Xj-1

Xk -1

+28@)\f (@) +|(H) | f dt—q]

< de+F (xim ) —ql+[(H) [ f dr] < e,

which proves the theorem.

The next theorem strengthens the result on continuity of the function F,
asserting that it has a derivative equal to f almost everywhere in [a, b]. The
symbol m(M) stands for the Lebesgue measure of the set M.

3.7. THEOREM. There is a set M < [a, b], m(M) = 0, such that for every
e>0 and tel[a, b]\M there is 3 = 3(t}) > 0 such that

(13) |F(y)— F(x)=f(ty—x)| < ely—xl|
for every x, y such that
(14) (t, [x, yDeH, [x,yl<B(, (), x,y¢E.

Proof. For 3 >0, te[a, b]\E define
P4(1) = inf(F(Y)—Fx)(y—x), @,(t) = supPy(t),
)

(1) = sup(F() —F(x))/(y—x),  &*(1) = inf $*(1),

where the infimum or supremum is taken over all x, y satisfying (14). Denote
P,={te(a, b); &, () <f(t)—n""},
Q, = {te(a, b); ®*() = fi)+n"},
M=) (P,uQ,.
n=1
If m(M) =0, the theorem holds. Assume m_(M) > 0. Then there exists,

say, an index p such that m,/(P,) = ¢ >0 (m, denotes the outer Lebesgue
measure; the proof is analogous if m,(Q,) > 0 for some gq).
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Choose 0 <e<oa/4p and find the gauge & corresponding to & by
Definition 2.1. For te P, set

Z(t)={(x, y) < [a, b]; x, y¢E, (t, [x, yDeH, [x, yle B(t, (1)),
(FO)~Fx)y—x)~1 <f(t)—1/2p}.

Then () #(t) covers P, in the sense of Vitali; hence there exists its finite
teP
disjoint gubsystem of (x;, y), i=1,...,r, such that

Z i—x;) = 0/2.
i=1 .
We may apply the Saks-Henstock lemma to this subsystem, which yields
| Z (F(.V.')_F(xi) _f(ti)(yi_xi))| <& <a/dp;
i=1

on the other hand, from the definition of &(t) we have

r

|i (F(y,-)—F(xi) _f(ti)(yj_xi))|'> Z
i=1

i=1

2 i i/ = 1

3.8. THEOREM. Let F be defined as above, put F(t) = F(a) for t < a and
F(t)=F(@®) for t > b. Let C < [a, b], m(C) =0. Then for every ¢ > 0 there is
a gauge 6 on C such that for any finite system {(t;, [, n]);j=1,...,r} c H
such that 1, C, [&;, n;] < B(t;, 8(t); &;,n;¢ E and the intervals [}, n,] do not
overlap, the inequality

(15) Y |Fn)—F()| <e
j=1
“holds.

Proof. Denote
C,={teC;n—1<|f(®)| <n}.
There exist open sets G, > C,, m(G,) < ¢, = €(3:2"n)"*; for te C, choose ,(¢)
such that B(t, 6,(1)) = G,. Since [£;, #,] do not overlap, we have

a

16 Y fem—E)=Y I Van—&)< T nmG) <ef3.
j=1

n=1 t;eC, n=1

For ¢/3 find the gauge J, from Definition 2.1 and put &(t) = min(J,(¢), 8,(z)) for
teC, &(t) = d,(t) otherwise. Using the modified version of the Saks—Henstock
lemma from Remark 3.5 we obtain

i IF(nj)_F(Cj)_f(Tj)("j_ﬁj)l < 3e
j=1
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that is,

Z IF("j)_F(éj)! <3e+ Z |f(Tj)|(']j_§j) <&
=1 =)

by inequality (16).

The next theorem shows that the properties from the two preceding
theorems characterize the indefinite H-integral.

3.9. THEOREM. Let E be an at most countable subset of [a,b], let
f: [a,b] > R, F: [a, b]\E > R. Extend F by F(t) = F(a) for t <a, F(t) =
F(b) for t > b.

Assume that

(1) for almost all t and all € > O there exists 3(t) such that (13) holds for all
x, y satisfying (14);
(i) if C = [a,b], m(C) = 0, then for every ¢ > Q there is a gauge 6 on C such
that (15) holds provided <;, &;, n; satisfy the assumptions of Theorem 3.8.
b

Then (H)|f dt exists and equals F(b)— F(a).

Proof. Let C, be the set of te[a, b] for which (i) is not fulfilled,
C = C, VE. Then m(C) = 0. Find ¢ from (ii) and define ,(z) = min(d(t), 3(t))
forteC, 6,(t) = 3(t) otherwise. Let ¢ > 0 and let 4 be a §,-fine H-partition of
[a, b],

= {(t;, [x; y s f =1, ..., k}.

Similarly as in the proof of Theorem 3.6, modify 4 so that F(x}), F(y;) are
defined for all /s and S(f, 4) changes only by ¢ (cf. Remark 1.2 and inequality
(11)). Then

h

H)ff dt = ) [F(y)—F(x)],

j=1

hence
(H)[f dt—S(f, 4p) < ¥ |[Fy))—F()—1 (005~ x)|
a 1;¢C .
+ 2 [FON—=FO)|+ X £ el —x).

tjeC tjeC

Using (1), (i) and estimating the last sum as in the proof of the preceding
theorem we conclude

ﬁf dt—S(f, A)l < const-g

which completes the proof.
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