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Existence, uniqueness and continuous dependence
of solutions of differential equations in Banach space

by Micuat KisieLewicz (Zielona Gora)

Abstract. In this paper we will study diflerential equations of the form
(nH X'=[f(t.x) for ae. 1[0, T],

by the assumption that f: [0. T] x X — X satisfies the Carathéodory conditions. where (X, [])
is 4 separable Banach space. The main result of this paper deals of the existence of solutions of
(1) satisfying an initial condition x(0) = x,,, where x, € X ([8], [10]). Furthermore. the uniquencss
and continuous dependence of solutions on the right-hand side of (1) will be here investigated.

1. Let p denote the Lebesgue measure on the real line R. A u-
measurable function of [0. T] into X will be called, simply, measurable. As
usual, we will say that f: [0. T] x X — X satisfies the Carathéodory condi-
tions if: (i) f (-, x): [0, T] — X is measurable for fixed xeX. (ii) f(r.): X
— X 1s continuous for fixed re[0, T] and (ii1) there exists a Lebesgue
integrable function m,: [0, T] — R such that |f (1, x)| < m,(t) for xeX and
ae. r€[0, T].

It is well known ([2], [5]) that the Carathéodory conditions are not
sufficient to guarantee the local existence of solutions of an initial value
problem for dilferential equations in Banach spaces. Therefore, we need extra
conditions involving of the ball measure of noncompactness . Here the ball
measure of noncompactness ff(A) of a bounded subset 4 of X is defined by

fitA) = inf {r > 0: A can be covered by finitely many balls
of radius < r}.

For the properties of f we refer eg. to [1]. We can directly obtain
B(A4) < diam(A) (the diameter of 4), B(A) = B(A), f(4) = 0 iff A is compact,
and if 4 < B then }(A4) < (B). Furthermore, it was proved in [6] and {7]
(see also [2]), that the ball measure of noncompactness has following
properties.

Lemwma 1.1, Ler (X, |*|) be a separable Banach space and (x,) a sequence
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of continuously differentiable functions x,: [0, T] = X such that |x,(t)] < c in
[0, T] for each n.
Then Y (1) = B(ix,(1): n>=1}) is absolutely continuous and

Y (1) < B({%,(1): n= 1)) for almost every 1 [0, T].

LeEmMma 1.2, Let (X, |'|) be a separable Banach space and (x,) a bounded
sequence of continuous functions of [0, T] into X.
Then y (1) = B(ix,(1): n=1}) is measurable and

7 T
B({fxa(tydr: n= 1}) < fy(r)de.
h) 0

Using of the known extension of the Tieze's Theorem, we will show that
the above properties of the ball measures of noncompactness can be exten-
ded on the case of absolutely continuous and Lebesgue integrable, respect-
ively functions x,: [0, T] — X . Recall, that we say that a function x: [0, T]
— X is absolutely continuous if there exists a Lebesgue integrable function

= [0, T] = X such that x(t) = x(0)+ fy(s)ds for t €[0, T]. It is easy to see

0
that in this case x has at almost every t €[0, T] the stong derivative x(r)

satislying x(r) = y(¢) for a.e. t€[0, T].

LEMMA 1.3. Let (X, |'|) be a separable Banach space and (x,) a sequence
of absolutely continuous functions x,: [0, T] =X such that |x,(t)] < m(t) for
almost every t€[0, T], where m: [0, T] >R is a Lebesgue integrable
function. Then (1) = B(ix,(1): n=11) is absolutely continuous and ¥ (t)
< B(ix,(0): n=1}) for almost all t €[0, T].

Proof. Let I =[0, T], A(t) = {x,(): n =1} and A(t) = {x,(1): n > 1)
for 1 €l and almost every r €/, respectively. In virtue of the Lusin’s Theorem,
for every # >0 and n =1, 2, ... there is a closed set E} < I with u(I\Ey)
< n/2" and such that x,| E7 (the restriction of x, to E}) is continuous. It is

easy to see that E, = () EI # Q. Indeed, suppose E, = @. Then
n=1

u(l) = pu(I\E,) < Zul\ N <Y (/2 =n for each n>0.
n=1

Therefore, E, # (. Suppose [urthermore, that E, is such that m| E, of m to
E, is contmuous too. Let ¢, = sup {m(1): teE . In virtue of the Tietze-
Dugundji’s Theorem, for every n=1, 2, ... dnd ﬁxed n > 0 there exists a
continuous extension )} of x,| E, on I, such that yJ (r)€conv {x(s): s€E,}

ni
for tel. We can assume that |x,(s)| < ¢, for each seE,. Therefore, for rel
t

we have |yi(1) <c,, too. Let zi(t) = x,()+ [yi(s)ds for tel, where t,
I
=infE,.

n
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We can easy to see that (!) is a sequence of continuously differentiable
functions of I into X such that |Z}(1)] < ¢, for rel and fixed 5 > 0.
Furthermore, ZI(r) = yy (1) = x,(t) for 1€E,. n=1,2,... and 5 > 0. There-
fore, for each n=1,2,... and n > 0 there exists a constant (7 such that

() —x,(r)=C, for teE,. But zi(,) = x,(t,). Then C;=0. and x,(1)
—-"(r) for teE,,, n=1.2...., n>0. Let B,(t)=1=2(1): n=1. B,
= {21(2): n= 1}, ¢, (0) = B(B,(1)) for fixed rel. We have ¢ (1) =y, 1) for
tekE, for each n>0. In virtue of Lemma 1.1, for every 5 >0, ¥, is
absolutely continuous and satisfies , (1) < B(B,(r) for almost every
t€[0, T].

Let n = 1/2™ and choose a sequence E; — E, < ... of closed subsets of I
such that u(I'\E,) < 1/2™ and so that (1) = ¢, (t) for 1 €E,,, where {,, is the
above defined absolutely continuous function of I into R, corresponding to n

=1/2" Let E = U E,. We have u(I'\E) = 0. For every t e E there exists m

such that y (¢) = t//,,,(r) and A (1) = B,,(t). Hence 1t follows that y is absolutely
continuous in I and that ¥ (f) = ¥, (), A(1) = B,,(¢) for almost every t€l.
Therefore, for almost every t €l we have

V() = Y (t) < B(Ba(0) = B(A(1)

which completes the proof.

LemMma 1.4, Ler (X, |'|) be a separable Banach space and (x,) a sequence
of measurable functions of [0, T] into X such that |x,(r)] < m(t) for almost
every t€[0, T] and n=1, 2, ..., where m is a Lebesgue integrable function of
[0. T] into R. Then @(1) = (A (1)), where A(t) = \x,(t): n =11, is measur-
able and [i({'fx,,(r)dt: n= 1)< ‘[d)(l)dr for each measurable set E =[0. T].

E i

Proof. Let us consider a sequence (v, satisfying the assumptions of
Lemma 1.2. We shall show first, the for every measurable set E < [0, T] we
have

B({fv(di: n>1}) < £W(t)dt,

where Y (1) = B(ly.(1): n=1}) for 1 €[0, T]. It is clear that we can consider
only measurable sets E with u(E) > 0. It follows from Lemma 1.2. that (or
every open interval (t,, t,) < [0, T] we have

2

2
B({[ya(9)ds: n>1}) < [Y(s)ds
B ty
Let ¢ >0 and let |(1,,1): 1 <i < N,} be a family of disjoint open intervals
such that

{ cdt <¢/8 and | y@)de <e/2.

EAH EAH
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where

N,
H={ (t;, ) n[0, T],
1

and ¢ > 0 is such that

o) <c¢ for te[0. T] and n=1, 2, ...

We have
(valrds = [ vi(s)ds— | y,(s)ds
E HUWE. H) HE
= [ ya(s)ds+ [ Vols)ds— j‘ va(s)ds.
H E H H E
Therefore,
B ya(s)ds: n=1})
E
A’C
<) I Y)ds+B(L | yalsyds: n= 1] +(] [ vulshds: n>1})
=1 ;. ) ~[0.T] EH HE
< (Y(s)ds+4 | cdr.
H “EH

Furthermore, we have

f(s)ds < [yr(s)ds+ | (s)ds.
i 3 EH
Then,
B({fya)ds: n=1}) < gw(s)ds-i-a,
E

for each ¢ > 0. Therefore,

Ya(s)ds: n = 11) < [ (s)ds.
E

Let m: [0, T)] >R be a Lebesgue integrable function such that
|x,(r)] < m(t), for almost every t €[0, T] and n > 1. Let us associate, to any
¢ > 0, a number J, > 0 such that, for each measurable set G < [0, T] with
1(G) <9, we have

[m(tydt <¢/2.
G

Now, for each fixed n > 1 and ¢ > 0, let E? be a closed subset of [0, T], with
u([0, TI\EY) <9,/2",

and such that the restrictions x,| E! and m| E} of x and m are continuous.
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It 1s easily seen that

E.= () E!#® for each ¢ > 0.
=1

n

Let
¢, =sup im(t): rekE,],
and suppose that

Ix, <c¢, forteE, and n=1,2,...

By virtue of the Tietze-Dugundji theorem ([3], [4]) for every n > | there
exists a continuous extension % of x,| E, on [0, T], such that

e <¢,  for te[0, T).
Therefore,

@, (1) = B({[vi(dt: n=1})
E

s

is measurable and satisfies
B[ ra)dt: n21}) < [ @, ()dt
E, E,
for each’¢ > 0. But, for t €E,, we have
Q. (1) = P(1).
Then & is measurable on [0, 7] and

Bl

Hxndt: n2 1)< [o(dr.
EC EL'

Now, we have

;
B xat)de: n2 1)) < [ @) di+B({ [ x,(0)de: n>1}),
h E£ Gc
where

G, =[0, T]I\E,.
It is not difficult to verify that
diam (| [ x,(t)dt: n>1}) <e.
GE
Therefore, for each ¢ > 0, we get
, ,
B x.(dt: n>1}) < [D(r)de+e,
0 0

which implies that

T T
BU{[x (0 dt: n> 1)) < [P(t)dr.
0

Q
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Hence, it follows, as in the first part of the proof, that

B({[x,(0dt: n>1}) < [P () dt
E E

for each measurable set E < [0, T]. The proof is complete.

We will need in this paper the following known result of the theory of
differential inequalities ([9], Theorem I11.16.2).

Lemma L.5. Suppose w: [0, T] x R — R satisfies the Carathéodory condi-
tions and let y,€R. Then there exists the right-hand maximum solution g of

v(ty=w(r, y() for ae. 1€[0, T],
y(0)= yo.

Furthermore, for every absolutely continuous function @: [0, T] =R
satisfying @ (0) <y, and &(1) < o(t, @) for ae. t€[0, T] we have
d (1) < g(t) for each t €[0, T].

As a corollary of above lemma we get

(1.2)

Lemma 1.6. Suppose w: [0. T] xR — R satisfies the Carathéodory condi-
tions and w(t, x,) < w(t, x,) for each x, < x, and almost all t €[0, T] and let
g be the right-hand maximum solution of (1.2). If &@: [0, T] — R is continuous
and such that

&(1) < yo+ f[wl(s, P(s))ds  for tel0, T],
0

then
&(t) < g(t) for each t€l0, T].
Proof. Let

1
h(t) = yo+ fw(s, @(s))ds  for t€[0, T].

0 .
For 1€[0, T] we have @(1) < h(1). Then w(t, ®(t)) < w(t, h(1)) for ae.
te[0, T]. Therefore h(1) < w(t, h(t)) for ae. t€[0, T]. Furthermore, h(0)
=y,. Then, by Lemma 1.5, we get @(t) < h(t) < g(t) for each re[0, T],
which completes the proof.

Let (X, |-|) be separable Banach space and let us denote by F the space
of all functions f: [0, T] x X — X satisfying the Carathéodory conditions.
T

Let G = (feF: {sup[|f(t, x)l: xeX]dt =0} and suppose # = F/G a quo-
0

tient space defined by the equivalence relation ~ defined by f, ~ f, iff f;
— f, €G. We will denote elements of .# as the same as elements of F. Let g
be a metric defined on .# by

T
e(f1 f2) = [sup Ui (¢, )— fo(t, X)|: xeX|dr.
0
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2. Let us consider an initial-value problem

x(t)=f(t, x(¢)) for ae. re[0, T],
(2.1)

X(0)= X0,

where f €.# and x,€X are given.

Let us denote by Q the set of all functions w: [0, T] x R — R satisfying
the Carathéodory conditions and such that w(t, -) is nondecreasing for fixed
t €[0, T] and with the property that an initial-value problem

¥()=w(r, y(r) for ae. re[0, T].
ylte)=0

has only the trivial solutions, for each fixed t, €[0, T].
We will prove now the following the existence theorem.

THEOREM 2.1. Let f € #, x,€X and suppose for every x € X there exist a
neighborhood U, of x and a function w,€Q such that B(f(t, B)) < w.(t, B(B))
for each bounded B < U,, x€X and a.e. t €[0, T]. Then there exists at least
one solution of (2.1).

Proof . We shall show first that there exist Ty € (0, T] and an absolute-
ly continuous function x°: [0, T,] = X such that x°(t) = f(t, x°(1)) for ae.
t€[0, T,] and x°(0) = x,. Hence it will be follow the existence of solutions
of (2.1) on the whole interval [0, T].

Let Uy, and w, €Q be a neighborhood and a function defined, in virtue
of our assumptions on f, corresponding to x = X;.

Suppose for the simplicity that U, is an open ball of X with the center
xo and a radius r, > 0. Let T, < T be such that

To
[ my(s)ds <rq
0

and let us define a sequence (x,) of functions of [0, T,] into X in the
following way

In

(2.2 Xp(t) = X0+ { S5, X,(5))ds
0

for 1 €[0, Ty], where ¢, = max (0, r—1/n).

It is easy to see that (2.2) define each x, (n=1, 2,...) on the whole
interval [0, T,] and that x,(1)eU, for each t €[0, To]. Let 4 = |{x,: n>1}
and A(1) = {x,(t): n>1} and Y (t) = B(A(1). It is easy to see that A is
bounded and uniformly equicontinuous subset of the Banach space
C([0, T,], X) containing all continuous functions of [0, T;] into X with the
supremum norm ||-||. Furthermore, by the definition of x, and a property of
m,, we can easy to see that x, is absolutely continuous for each n=1, 2, ...
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and satisfies

X (O] = |/ (tae Xa(t))] S mp(t) Smp(r)  for ae. 1€[0. Tp].

Therefore, by virtue of Lemma 1.3, ¥ is an absolutely continuous function of
[0, Ty] into R. Furthermore, by the definition of x, we have

Xy (1) = Xo+ | 1 (s, x,(8)ds,
(;‘l

() = x4+ | S5, x2(9))ds+ [ f(s. x2(s))ds,

(;’l G

~= v

Xa(t) = xo+ | f(5, x,(5))ds+ i [ f(s. x,(5))ds,
“ie

¢4 k=2t

where G| = E{, G, =E, . \E, for n>1 and E} = [0, t,,] for n=1, 2,
and fixed t €[0, T;].

Let I' denote the family of all sequences (n,) of positive integers such
that n, =2 k for k=1, 2,... For each (n)el’ we have

x T
Yo x, ()ds < | mp(s)ds < [m, (s)ds.
k=1 ('k o«

oot
k=1

Therefore, for each (m) €l the series . | f(s. x,, (s))ds is converging. For
k=1t

fixed p=1.2. .. and re[0, T,]. let

H,(1) = ‘Z [ g(s. x, (9))ds: () e
k=1

K,(t) = | Z [ S (s, xp () ds: (m)el}].
k=p+1Gp

We have

14
AW = ix) +H,(0+K,() and  H,()= Y 4,(),
k=1

A@) =10, ..., 0, [ f(s, Xa(s))ds: n=k} for te[0, T,], k > 1

I
Gy
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Furthermore, for each re€[0, T;] and fixed p =1, 2. ... we have

diam (K, (1)) < Z |' ni(s)ds.

k=p+
k

Since Z { my(s)ds is converging. then Z { mp(s)ds =0 as p =« . There-

k=1 gt k=p+1 gt
Gy PG N

fore. for every « >0 there exists p, > 1 such that ) | mpts)ds < /2.
k=pri gl

Then diam (K, (1)) <& for each 1€[0, T,]. On the other hand. for fixed
1€l0, Ty] we have

Py
B(H, (D)< Y, BlAm)
k=1

e

Zﬂ( f(s. xu(3))ds: n = k)
k

< [ B (s, xa(9): n=kj)ds
I\:IIG:‘

gf[/f(ff(s. x,(8): n=1)ds

t
< .[(u(, (s BIx,(9): n = 11))ds.
0

Therefore,

!

BlA) < _\'wn(.s', B(A()))ds+¢  Tor 1€[0, Ty} and & > 0.

0

Hence it [ollows that

t
W) < [wy(s, Y (s))ds  for t€[0. Tp].

0
Furthermore, ¥ (0) = 0. Then, in virtue of Lemma 1.6, hence it follows that
() < g(r) for 1 €[0, T,]. where ¢ is the right-hand maximum solution of
¥ir) = we(r, » (1) for ae. r €[0, Ty] and y(0) = 0. By the properties of w,. we
have ¢(t) = 0 for 1t €[0, T,]. Therefore, ¥ (r) =0 for r€[0, T;] and A(r) is
compact for each t [0, T,]. Hence it follows that 4 is compact: therefore
there €xists a subsequence, say (x,) of (x,) and x°eC ([0, Ty]. X) such that

lx.—xoll =0 as k = ou. It is easy to verify that x° is a solution of (2.1} in
[0, Tol.
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Now in a similar way as above we can show the existence of T, € (T, T]
and absolutely continuous function x!: [T, ;] =X such that x'(r)
= [(r. x" (1) for ae. 1€[T,, T,]. x'(Ty) = x°(Ty). Hence it follows at once
that a function z,: [0, T;] = X of the form z,(t) = x°(t) for t = [0, T,) and
2, ()= x'(n) for t €[ T,. T,] satisfies: z, (1) = f(t. z, (1)) for ae. r€[0, T, and
2, (0) = x,. Continuing this process we can easy to show the existence of
solution of (2.1) on the whole interval [0, T]. The proof is complete.

TueorReM 2.2. Let f € # and suppose (f,) is a sequence of F such that
() lim ¢(/..f) =0,

(1) for each x € X there are a neighborhood U, of x and w. € Q such that
B(f.(t, B) < w,(t. B(BY") for each n=1,2,... ae. te[0, T] and bounded
BcU,; xeX, where B'"=|xeX: dist(x, B) <1/n}. Then for each
Xo€X, (2.1) has at least one solution.

Proof. By Iim ¢(f,.f) = 0, there exists a subsequence, say again (f,) of

n—ao

(f,) such that | f,(r, x)— f(t, x)) =0 as n = oc for ae. t €[0, T] and uniformly
with respect to xeX. Since f(t,x)=[f(t, x)—f,(t, x)]+ f,(, x) for
t€[0, T] and x€X, then for each bounded set B < U, and eachn =1, 2, ...
we have [f(t, By = H'(B)+ f,(t. B), where H.(B)=I{[f(t, x)— f,(t, x)]:
x€B!. Since sup {|f(t, x)— f,(t, X): xeX| =0 as n > for almost every
fixed r€[0, T]. then for each n>1, there exists N,>1 such that
diam(H,(B)) < 1/n for n > N, and ae. 1 €[0, T].

Therefore, for each bounded set B< U,, n> N, and a.e. t €[0, T] we
have f(/ (1, B)) < I/n+w,(r, f(B'"). Hence, by continuity of w,(r, -), prop-
erties of the ball measure of noncompactness, we can easy to see that
B(f(t. B)) < w,(t, f(B)) for each xe X, bounded B c U, and ae. t €[0, T].
Now the existence of solution of (2.1) follows immediately from Theorem 2.1.
This completes the proof.

Using the classical method of successive approximations we can easy to
prove the existence and uniqueness theorem, by the assumption that f'is locally
Lipschitzean with respect to xe€X. Recall that fe.# is said to be locally
Lipschitzean with respect to x € X if for every x € X there are an open set U,
with xeU, < X and a Lebesgue integrable function k.: [0, T] =R such

that [/ (¢, x,)— f(t, x3)| < k.(t)|x; — x| for each x,, x, €U, and almost every
t€[0, T].

THEOREM 2.3. Let f €% be locally Lipschitzean with respect to xeX.
Then for every x,€X there exists exactly one solution of (2.1).

Proof. There exists an open set U, c X with x,€U, and a Lebesgue
integrable [unction k, of [0, T] into R such that [f(t, x;)— f(t, x,)|
< ko) |x; —x,| for ae. t€[0, T] and x,, x, eU. Suppose, for the simplicity
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that U, 1s an open ball with the center x, and a redius r, > 0. Let T, < T
To

be such that jm_,(r)dt <r, and let us define for each ref{0. 7;], the
0

t

sequence (x,(1)) of the form: x, (t) = xo and x, (1) = xo+ [ f(5. X, 1 (s))ds for
0

n=2,3,... It is easy to see that x,(t)eU, for each t €[0, T;]. Hence and
the property of f'it follows that (x,) is uniformly converging on [0, T;] to the
uniqueness solution x° of (2.1) on [0, Tp].

Now, let x, = x4(7,) and let r, > 0, an open set U, — X containing x;
and k,: [0, T] =R be such that |f(t, y,)— f(r. va)| <k (1)]y, =y, for ae.
t€[0, T] and each y,, y,e U,.

Similarly as above we can show the existence of the uniqueness solution
x' of x(t) = f(t, x(1)) for ae. t€[Ty, T;] and x(T,) = x; on some interval

T
[Ty, T,], where T, < T s such that j'm_,(r)dz <r;. It is easy to see that
To
the function z, defined by z, (1) = x°(r) for r€[0, Ty) and z, (1) = x' (1) for
te[Ty, T;] 1s a solution of (2.1) on [0, T;]. Continuing this process we can
show the existence of the' unique solution of (2.1) on the whole interval
[0, T]. This completes the proof.

THEOREM 24. Let f € F satisfy the assumption of Theorem 2.1. Suppose,
for fixed xo€X, (2.1) has exactly one solution x(f). Then x(f) continuously
depends on f € F, ie., for each sequence (f,) of F such that o(f,.f)—0 as
n = o0, we have ||x(f,)—x(/)ll =20 as n = o where x(f,) denotes the solution
of (2.1) corresponding to f,.

Proof Let x = x(f) and x, = x(f,). We have

X, (1) = X0+ [ fo(s. x,(s))ds  for t€[0, T}
0
and

x(t) = xo+ 'jf(s, x(s))ds  for t [0, T].
0

Let us denote by (x;) an arbitrary subsequences of (x,). Since f €% and

e(fi. /) 20 as k = oo, then there exist a subsequence, say again (f;) of (f;)
and Lebesgue integrable function m: [0, T] — R such that |/, (., x)| < m(t}

and |f (1, x)] < m() for xeX and ae. r€[0, T]. Hence it follows that (x,) is
bounded and uniformly equicontinuous sequence of C([0. T], X). Let U,.
wo € and T, € (0, T] be such as in the proof of Theorem 2.1, corresponding
to xo€X and m. In a similar way as in the proof of Theorem 2.2 we can
prove that B({%.(1): k > 1}) < wo(t, B({x(1): k > 1})) for ae. t€[0, Ty]. In
virtue of Lemma 1.3, the function y () = B({x.(r): k= 1!) is absolutely
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continuous in [0, T,] and satislies
U < B0 k> 1)

for ae. t€[0, T,]. Furthermore, we have ¥ (0) =0. Therefore, for ae.
1 €[0, T,] we have y(t) < @o(t, ¥ (1)). Hence and Lemma 1.5 it follows that
Y (t) =0 for each r€[0, Ty]. Similarly, now we can find T, €(T,, T] and
w, €Q such that (1) < o (1, Y (1) for ae. te[T,, T,]. Since ¢ (T,) = 0, then
hence it follows that () =0 for t €[ Ty, T,].

Continuing this process we can show that (1) =0 fer ¢e€[0, T].
Therefore 4 = |x;: k = 1! is relatively compact in C([0, T]. X). Then, there
exists a subsequence, say again (x,) of (x,) and XeC([0, T], X) such that
llx, —X|| =0 as kK = oc. Since

|X ()= xo— § /(5. X(5))ds|
0
SR (O = x (14 [[fe(s, X0 (8)) = ficls, X(s))| ds +
0

ka (s, X(s)— f(s. X(s))| ds
0

forte[0, T]and k =1, 2, ..., then we can easy to see that X = x (f). By the
unicity of solutions x( /), hence it {follows that every subsequence of (x,) has
a subsequence converging to as the same limit x(f). Therefore, |x,—x| =0 as
n —x. This completes the proof.
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