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On solutions of Fourier’s first problem for a system of
non-linear parabolic equations in an unbounded domain

by P. BEsALA (Gdansk)

Introduction. In the papers [5]-[9] M. Krzyzanski has proved,
among other theorems, some theorems on the existence and uniqueness
of the solution of Fourier’s first problem (as well as of the Cauchy prob-
lem) in an unbounded domain and in the class of functions E, for the
linear equation of parabolic type of the normal form (for the definition
of class Ej, see § 1 of this paper)
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For this purpose M. Krzyzanski has constructed certain auxiliary func-
tions which permit to prove of the above-mentioned theorems for equa-
tion (0.1) with unbounded (continuous) coefficients fulfilling the in-
equalities

(0.2) |au(@,t)| <4, [bi(z,1)] < Ai|2[+By, ¢(a,) < 4do[2P+B,,

m
A, A,, A,, B, B, being positive constants, || = () «})"".
P

In this paper we consider the problem posed by Professor Krzy-
zanski. We deal with a system of non-linear equations with partial deri-
vatives of the parabolic type of the form

ou ou Qus Puy Pu &u
(0.3) —a—tf=Fs(:l:1,...,a)m,t,u”,,,,un’__s’. s 8 8 3)

0w, omm Ox: owdm,  Oxn
(3 == 1’ ...,‘n) y

where in the equation with the index s the derivatives of functions
Ugy oeey Ug—14 Ust1, --.y Un A0 NOL appear.

Theorems I-III dealt with in this paper concern the solutions of
Fourier’s first boundary-value problem in an unbounded domain (they
hold for the Cauchy problem as well). And thus in § 3 we prove the

17*



248 P. Besala

theorem on the uniqueness of solutions of this problem in class FE,.
Theorem II in § 4 concerns certain inequalities between the solutions
of two systems of equations of (0.3) form in an unbounded domain and
in class E,. Theorem III (§ 5) speaks about the existence of a solution
of Fourier’s first problem in an unbounded domain if we assume the
existence of a solution in a bounded domain. We assume the functions
appearing in initial and boundary conditions to belong to class E,, and
we prove that in that case the solution also belongs to class E,.

In all the theorems we assume that the functions F, appearing on
the right side of the system (0.3) fulfil a certain condition weaker than
that of Lipschitz (the so-called (£)-condition; see § 2). In the statement
on inequalities we assume additionaly that the ¥, functions are not de-
creasing with regard to some variables.

The method of proving these statements is based on the method
applied by M. Krzyzanski. Using the above-mentioned auxiliary func-
tions constructed by M. Krzyzanski we show that the theorems men-
tioned previously remain true for the (0.3) system embracing equation (0.1)
with unbounded coefficients fulfilling the (0.2)-conditions.

Fourier’s problems for the system (0.3) have been treated by
J. Szarski [17], [18] under weaker assumptions concerning the func-
tions F;, but nevertheless in domains whose intersections with hyper-
planes t = const are bounded.

A theorem similar to II has been established by W. Mlak [13] in
a bounded domain.

The Cauchy problem for parabolic non-linear (quasi-linear) equa-
tions has been considered in papers [2], [19].

S. D. Eidelman [2] has proved the correctness of this problem (in
a sufficiently narrow strip) in class F, for a parabolic system of quasi-
linear equations and under stronger assumptions than those in this paper,
concerning, among other things, the character of increase of the non-linear
term together with an increase of || and %, ..., %n.

In his paper [19] T. D. Ventcel has proved the existence and uni-
queness of the solution of the Cauchy problem for a parabolic quasi-
linear equation under strong assumptions concerning the coefficients and
functions appearing in the initial condition.

I wish, here, to express my sincere thanks to Professor M. Krzyzanski
for posing the problem and for his valuable advice while I was working
on that subject. I should also like to thank Professor J. Szarski for his
helpful remarks.

§ 1. Notation and definitions. Let us denote by z(z,, ,, ..., Tn)
a point of the m-dimensional Euclidean space ¢™, and by (2,, Ty, ..., Tm, 1),
or shortly (z,t)—a point of the space ¢™*'.
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Let D denote an open unbounded domain of ¢™*', lying between
the hyperplanes { =0 and ¢t = 7 > 0, whose boundary FD consists of
m-dimensional unbounded domains 8° and ST of hyperplanes t =0,
t = T and of surface ¢ which is not tangent to any hyperplane ¢ = const.

System (0.3) will be written shortly as

ou ous *u

(1.1) ’a‘tf =F.g(w,t, u,,gm—'; 2

We assume that the functions Fs(z,t?, yi, 2, 2%) (8 =1,...,7n) are
defined in the domain /7 defined as follows: (z,?)e D and ys, 27, 2
arbitrary.

Let

(1.2) Wy (2, 1), wy(z, 1), ..., walz, 1)

7axjaa;k) (3}?::1,...,'”/; j,k:l’_“’m).

be a sequence of functions of class C!' in D. We will make use of the
following definition, due to J. Szarski.

DEFINITION I. An equation with the index s of (1.1) is called para-
bolic with respect to sequence (1.2) if for every system of numbers 2, Zx
G,k =1,...,m), 2 = 2, Zjx = s, such that the quadratic form

D, (2= Z) Ay e
=

is non-positive for arbitrary vector (4, ..., Am.), the following inequality
holds:

ows{z, t ows(x, 1) _
F,(m,t,wi(m,t),—:;( 2 )-,z,k)—F,(m,t,wg(w,t),————'( ? ),z;;,) <0
X o0y

for (x,l)eD.

If each equation of (1.1) is parabolic with respect to the same sequence,
then we say that system (1.1) is parabolic with respect to that sequence.
The solution of system (1.1) is called parabolic if this system is parabolic
with respect to the solution.

We say that a solution ui(x,t) (¢ =1, ..., n) is regular in D if the
functions u(x,t) are continuous in the closure D of D and possess con-
tinuous derivatives appearing in the equations of (1.1) in the interior of D.

DEeriniTION 1I. We will say that the function Fi(z,?, yi, 25, 2%)
satisfies the (Q)-condition if there exist positive constants L, ..., L, such
that, for arbitrary wi,2;, 2%, %, 25,2 (¢t =1,...,0; j,k=1,..,m),
Ys = ¥s, we have the inequality

Fs(z,t, yi, 25, 2x) —Fo(x, 1, §1, 25, Zsx)

<Ly D) om—zw] + (L@ + L) lef—5f1+(La|wlz+L4) Zl’lyz—?al,
j= i=

j1k=1
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m
where |z| = () #i)'”. It means that the function F, satisfies the Lipschitz
=1

condition with respect to the wvariables ¥y, ..., Ys—1y Yst1y -eey Yn, 24y %k
(j,k =1,...,m) (at the same time some of the Lipschitz constants de-
pend on x) and that the difference quotient of Fs for the variable y, is
bounded only from above by L,|z[*+L,.

By E, M, K) or shortly E; we will denote the class of functions
v(z, t) for which positive constants M, K exist such that the inequality

[y (e, 1)] < Mexp(K|z[’)

is satisfied in D, and by Z;(4, B) or Z,;,d > 0, we will denote the class
of functions y(z,t) for which positive constants 4, B exist such that

|x(z,t) < A|z]*+B for (z,t)eD.

§ 2. Formulation of the problem. Let ¢«z,f) (¢ =1, ...,n) be
arbitrary given functions, defined and continuous in the set 2 = 8°+ 0.

In this paper we discuss the first boundary-value problem of Fourier,
which we formulate as follows: to find a parabolic solution wu¢w,?)
(t=1,...,n) of system (1.1), regular in D and such that

iz, t) = @iz, t) ({=1,..,n) for (z,f)el.
In what follows we will call this problem the (FI)-problem.

§ 3. The uniqueness of solution of the (FI)-problem.

THEOREM 1. If each function Fs(x,t,yi, 25, 2%) (8§ =1, ..., n) fulfils
the (L)-condition in II, then the (FI)-problem possesses mo more than one
solution wu,(x,1), ..., up(x,t) of class E, (*) in the domain D.

Proof. Suppose there exist two such solutions, (" and «{® (i =1, ...,n).
Then the differences u; — u{’ —u{® satisfy the system of equations

Ous (1) au&l) az’lllgl) (2) 3u§2) 62’“(:)
3.1 — =Fslz, t, u; —, ——— | — Fsl: iy
31 5 ’( b W T aman) LT b T G0 o

(s=1,..,n).

We may assume that all the functions u; (¢ = 1, ..., n) belong to E,(M, K,)
with the same constants M and K,.
Let Dr be an open bounded set separated from D by the cylindrical

m
surface I'z with the equation D z} = R’.
i=1

We will denote by 8%, Sk and Zg the parts of the surfaces 8°, ST
and 2, respectively, lying inside and on I'y, whereas by Cr we will de-

(*) L.e. each function u;(x, t) (4 =1, ..., n) belongs to E,.
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note the part of I'r contained in D. Further, let D", D&, Z* Xk, C%
denote the parts of the sets D, Dgr, 2, X2, Cgr, respectively, contained
in the strip 0 <t <h, h < T.
We first prove our theorem for a domain D*, where k will be a con-
veniently chosen (sufficiently small) co(n)st?l)lt
1 2

Now we introduce the functions #;’, v;° according to the relations

u =" H(z,t; K), u® =o®H@=,;K) (=1,..,n),
where

(3.2) H(z,1; K) —exp{K + z,

is the auxiliary function constructed by M. Krzyzanski in order to prove
similar theorems for the linear parabolic equation (see, for instance, [6]).
Here u(K) and »(K) are positive constants which will be conveniently
chosen for K > K,.

Writing v, = v‘f’ oY) we have u;=vH(z,1;K) in D* where
h < 1/u(K). Introducing the functions vs, v{", o into (3.1), subtracting

and adding convenient expressions we get the system

00s oH
(3.3) a—tH—]-‘v,g—a? =

Fa(w t, v H, 3”" ~H +o, WOH | o)y 00 OH oo O] | o) FH )_

* om;’ 0x;0aK 6wk 0wy aw,- oz oz ;0T

ve am,’amjam,, oxy 0m; | 0wy Omp | ° wjomk

2 oH & P oH o0l o o°H
—F,(m,t,v‘,”H 0 | w2l ve OH  0va OH | o OH )

oH %P o oH ov’ eH &H
+F,(x, 1o H woH " OH | o

® ox;’ oxsomy Bmk ow; | om; dmy | ° owjoxy|

2 (2) (2) (2) 2
—Fs(x t 'ui))H 8'03 H+ (Z)3H 8 H oH oH ’D(z) OH )

* ox;’ aa,-,aack aa:k ox; aac, oxy | ° Omj0xE
(8 = 1’ ceey n) .

Let {R,} be an increasing sequence, R,—oco as a—>oco. Let us consider
(for a fixed a) the domain D},. We write

4, =max sup |vdz,?)|.
(a:,l)cD"’Ra

There exist an index i, and a point (2., %) € Dk, = (D, +85.)+ Sk +Ck,
such that A4, = |v; (2, t.)|. We will show that, the constants u(K), »(K)
and h(K) being conveniently chosen, the relation (z,, 1) € D?;G+S§u
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implies v¢,(2,, ) = 0. Indeed, suppose the contrary; there are two cases
to be considered:

a) V4,(ZTq, t;) > 0. Then at (xz,,?,) we have

Substituting # = z,, { =1{, in the equation with the index 4, of (3.3)
and taking into account the definition of parabolic equation (see § 1),
we find that the difference of the first two terms on the right side of
this equation is non-positive. Now we estimate the difference of the
remaining two terms. According to the ({)-condition assumed we have

0*H
4 a:c; 0T

o4 Lofol+ L, | H|+(L,|m|2+L>Z Jod .
j=1

n
Since 2 l'”i(maa a)l n'v‘ia(wa) t;), we have

m
001, [
(34) GEH<vL, 2
7,k=1
oH

m
oH
+@lal+2) Y 2+ tafop +Lyng -5 o, FE.
i=1

*H
0x;0xy

We will show, as in paper [6], that the constants u(K), v(K) and h(K)
can be chosen (independently of a) in such a way that FH < —NH,
N being an arbitrary positive number. Namely, we have

4K°L, 2KLym
< [(1 ﬂt)’,gl mal+ Tt (Lllwl+Lz)glel+

. _pElzP
+(L31wl +L4)n (l—ﬂt)z 1’] *

Writing L = max(L,, L,) and taking into consideration the inequalities
log| < |, |2| <|z)2+1, 1—ut <1, we have
FH <= H (T s 4K Tom?laf + 2K Lym + 4K Imal+
+ 2K Lm + nLy|x? + nly— puK o2 —v(1— put)?] .
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Choosing

u(K) = 4KLym? +4Lm+nL}f+ ’ (A-arbitrary positive constant),
(3.5) _

WME)=1ZF 0<y<1,

©(K)

we obtain y <1—ut <1 in D% and hence

FH < (—j t)2[ Az +2KLym + 2K Lm + nL,— vy*] .

Putting

(3.6) »(K) = 2K L,m —{—2Kl;,m—|— nly + N (N -arbitrary positive constant)
4

we have

FH < —AH|ap—NH<—-NH <0.

0V1,(Zq, t,,_)

This is in contradiction with = 0 and (3.4).

ot
b) v¢ (2., t.) < 0. Repeating the above reasoning for the function
Vi@, t) = —v4,(, 1), we also obtain a contradiction. Now, if (2., %) € ZRG,

we have (by our assumption) vy (z,,1,) = 0, and finally if (z., %) € O’Rﬂ,
then

2 2
|Dt4(@ay ta)| < Mexp(Ko|za[) _ MeXp(-gfoRa)

exp{ LA +vt} exp{lIiRt +vt}‘

Thus, since v, t)| <|vi (2., t.)| in DTRG, we have proved that, the con-
stants u(K),v(K) and h(K) being chosen according to (3.5) and (3.6),

we have in D_ﬁ: the inequalities
Mexp (K, R2)

R,
exp {1 s + vta}

Now let us take an arbitrary point (z,?) € DA For an arbitrary number

e > 0 there exists an index a,(e) such that for a > a, the point (Z,?) € D%,
and

|'U¢(.’D,t)|< (¢2=1,..,n).

Mexp (K, R;)

Y-
‘pl_ t+v

<e.
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Consequently, v4(Z,?) =0, whence %i;%,i) =0 and thus wuiz,t) =0
(i =1,...,n) in the whole domain D=

Similarly, the theorem can be proved for the parts of the domain D
contained in the strips: jh <t < (j+1)k (j =1,2, ...). For this purpose
it is sufficient to put t=?+j~h (7 =1,2,...) (see, for instance, [9]).

§ 4. Centrain inequalities between solutions of the (FI)-
problem for two systems of equations. Under a supplementary
assumption we will prove a stronger theorem than theorem I.

Let us take a system of functions y,(¥., ...y Yny )y ooy YulY1y vy Yn, 7))
where 7 denotes a sequence of variables different from y,, ..., y». The
following definition is introduced: the function vs(y,, ..., ¥n,t) satisfies
the (W)-condition with regard to variables y,, ..., y» if for y: < 7, © # s,
Y¥s = Js we have the inequality

Ys(Yry ooy Yy T) S Ps(Yyy ooy Yy T) -

TrEOREM II. 1° Let w(z,1), «(x,t) (4 =1, ..., n) be reqular solu-

tions, belonging to class E,, of the systems of equations

311,(” 1) Qa 3'u,(1) azu(l)
(4.1) ?:' = F} wytyui)’ 3.’;;’3.’1:13;;; (s =1,..,n),
Bu(‘z) 2) (2) 3’6&(2) 32’?1,(2)
4.2 = = F : i s =1, ... .
( ) ot 1’(3 Tyly Uiy ox; ’ 9202 (s 3 )y 1)

2° For each s (s =1, ...,n) the equation with the index s of system
(4.1) or (4.2) is parabolic (see § 1) with regard lo the solution u(x, 1)
and ud (x, 1), respectively.

3° For each s (s =1,..,n) the function F(x,t,y:,2;,2m) or
Fx, 1, Yiy 27, 2jx) satisfies the (W)-condition with respect to the variables
Y1y ooy Yn and the (R)-condition (independently of the respective equation
of the system (4.1) or (4.2) being parabolic).

4° F'gl)(m, ty Yiy 24, Zik) <ﬂ2)(m1 t Yi, 2, 2x) (s = 1,..,n) for (z, 1, ys,
27, ij) eIl

5 u(z,t) < uP(x, 1) (5 = 1,...,n) for (x,t)e 2.

Under the assumptions 1°-5° the inequalities

u(z,y t) <uP(@, ) (6=1,..,n)

kold for (z,t) e D.

Proof. For simplification we may assume that all the equations
of system (4.2) are parabolic with respect to the solution u?’(a;, t) and
that all the functions FY (s =1, ..., n) satisfy the (£)- and (W)-condi-
tions. In the remaining cases the proof is similar.
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The differences u; = u{"—u{ belong to the class E,(M, K,). Let
us introduce the functions v, v according to the relations ui’ = v"H,
uP =oPH (i=1,..,n), where H = H(z,t; K), K > K,, is defined
by (3.2). Writing v; = vﬁ”—v,), we obtain u; = v H.

Let us put
o) oH o oH
m _ 9 mod @ _ 90s @041
= by H v, ex;’ 7 ox; H + v, ox;’
wny _ &5 o oH a"’_(el) oH o® &H
* = Px;0m dx; dxx = Oxy Ox; = Oxy0TK
(4.3) )
an 80 ovg 0H oo oH o °H
Tk = oy omy ow; oy | Omg Ox5 | owsoxy
(2,3 _ 3“ ) Bv(f) a._E[ 6H v(v) 32H
Tik 050Xk o0z Oz 312); 3.’L‘j 0x;0Ty )

Subtracting the adequate equations of (4.2) from (4.1), introducing the
functions v, v, v;, and subtracting and adding convenient expressions,

we receive:

(4.4) av‘H—I— saH _me 1, oVH 7 ® 1)) Fm)(w ‘ v(,l)H S I)H_

1 Ti y Tik iy Tik

@) @ (2 2 2 @ _22
F”(:v tyv; H, 1 ), 274 ))—FS’(m,t,'v(,-)H )+

Ty Tik

2 m m (11 &) 2 (1,2)
+FPz, t, " H, &, ) - FP(x, t, WP H, 77, 5Y)

ik
(s=1,..,m).

Let us take an increasing sequence {R,,}, —>o00 a8 a—o0. We retain

the meaning of the symbols D" DR, .. G’R mtroduced in the proof of

theorem I. Let us denote
A, = max sup oix,1?).
O @ l)el)"

There exist an index i, and a point (z,, t,) € .D’}:(a (D'};».l +S’].fa) + 2}‘;,,-}-0"
such that 4, = vy, (%, t,). We will show that, the constants ,u(K), v(K)
and Ah(K) being conveniently chosen, the relation (&, t.) f-DRa+SR¢
implies the inequality i, (%4, 1:) < 0. Indeed, suppose that (2., %) € D’};n+
+Sf¢a and vi,(%a, t:) > 0. Then at (x4, f,) we have

ov; 04 02v;
—2=>0 -t = 11 as ——2 ;A
5 = 0 Py 0 as well as Y‘ d%dx k<
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Substituting # = x,, t = ¢, in the equation with the index i, of (4.4)
we find, by virtue of assumption 4°, that the difference of the first two
terms on the right side of this equation is non-positive, and from the
definition of the parabolic equations it follows that the difference of
the next two terms is also non-positive.

Suppose that a certain number (e.g. g, 1 < g < n) of the functions
among v, ..., ¥, at point (., ) admit a positive value the others having
non-positive values. Without loss of generality we may assume that
they are the functions v,, ..., v, (and that 4, < gq).

The difference of the last two terms in the equation with the index i,
of (4.4) at (x,, %) can be written as

(4.5) F(Z)(maa lay 'v(l)Ha .es (I)H véli)-lH, cary ’US)H 0 11))

1 T3y Tik

2 2 2 1 1 2 1,2
—-I‘)(a:a,t.,,v()H,...,'v.f,)H,'v;llH L VOH 2P, 5P +

1Ty Tik

2) (2 (1) 1 2 1,2
+F'£Ca(xaa ta’lvl)H ’/Uq)H vq+1H ,’Dg,)H, 7)’ (‘k ))_‘

P, tay WOH oy WOH, 0L H, oy oOH 7P, )
By the (W)-condition the difference of the last two terms in (4.5) is non-
positive; however, the difference of the first two terms is estimated by
virtue of the ({)-condition. Taking at the same time into consideration
the equalities

B0 (s ta) OV ey L)

awj = a$j (.? = 17 A | m) b
we have
V4,
0< H<”‘°[ " aa: lHL‘I ol +L
L3|w|2+L4>qH ‘15[ Lo, Py H.

Choosing conveniently u(K),»(K) and h(K), as in the proof of theo-
rem I, we find F; H < —NH < 0. Thus we obtain a contradiction. Now,
if (24, t) eE;‘gu, then (by our assumption) v (%, %) <0 and finally, if
(Tay ta) € Cﬁ»ﬂ, then we have

Mexp (K, RZ)
5 .
exp {lIiR + 7t }

Thus we have proved that, the constants u(K),»(K) and h(K) being
conveniently chosen, the last inequality always holds.

'vfa(wa, ta) <
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Let (Z,1) be an arbitrary fixed point of D" For every z> 0 there
exists such an qi(¢) that for a > a, the point (z,?) eD}';a and

2
MeXP(ffoRa) <.
ex [_IER_"_}_pt}
pll—‘ut,Jl ¢
Since )
. Mexp (K, R;
24l Z, ) < 01,(0ay la) < e’;’éz ofe) i1, m,
exp{l_ﬂ +vt}
we have vi(Z,%) <0 (s =1, ..., n), whence vy(z, t) < 0 and thus u(=z, ) <0
(¢ =1, ...,n) everywhere in Dr,

As in the proof of theorem I, the change of variable ¢ permits to
prove this theorem in the whole domain D.

Remark. It is easy to observe that the change of direction of the
inequalities in assumptions 4° and 5° changes the direction of the in-
equalities in our theorem. If, therefore, F’ = FY in I7 and «(z, 1)
= uP(x,t) in X, then wP(x,t) = u’(x,t) in D. Hence we obtain the
uniqueness of the solution of the (FI)-problem, under stronger assump-
tion, however, than in theorem I. In the case of one equation, theorem II
18 more general than theorem I because then the (W)-condition does
not interfere.

We have proved theorem II in the case where all the equations
of (4.2) are parabolic and all the functions F (s =1, ..., n) satisfy the
(2)-condition and the (W)-condition. In this case the equations of (4.1)
are not necessarily parabolic, just as the adequate functions do not
necessarily satisfy either the (2)- or the (W)-conditions. For example,
the functions u{” = /2 +e¢ “*** ¥’ — /2 are the solution of the system

3,“(1) a2u(1) 32 (1)

+V|sinu®—1
at oz: oxs
(4-6) (1) 9 (l) ) x o
Bu._ o Us a'u- 1T B
at 8{171 33}2

(2)

whereas the functions u; = 3, u(z’ = 5 constitute the solution of the

system
oul?  Fu® PP
1 — + ,
ot 3.’1/‘1 6w2
(4.7) @) @ .2 @
OUs o Us d Us 9 o
L= b 2.

at 3:1:1 3332
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The inequalities «{" < uf’, ul’ <« are fulfilled in the part of space

x, >0, 2,20, t >0. All the assumptions of theorem II are satisfied.
The equations of (4.6) are not parabolic and, moreover, the suitable
functions do not satisfy either the (£)- or the (W)-condition.

COROLLARY. In the class Z, (see § 1) of functions uz,t) (1 =1, ..., n),
6 being an arbitrary positive constant, we can prove theorems 1 and 11 if
the (L)-condition is replaced by a weaker one. Namely, it is sufficient to
assume that there exist positive constants Ly, L,, ..., Ly such that for ys > ¥s
(s =1,...,n) the following inequalities hold:

Fs(x, 1, 91, 25, 2x) — Fs(x, t, Y, 25, Zjk)
m m
<Ly O lon— 2+ (Tl + Loy + L7l + L) Y 25— 5]+
k=1 =

n
(Ll + Lly [ + L gl + L) D yi— 7]
i=1

where
vl = ()" el = (Y 5"

Proof. If there exist positive constants 4, B such that |y < Alx+
+ B, then

jylie = (3 g™ < mxalab+ Bye.
i=1

Put 4, £ w4 + B)s, In the case |z] > 1 we have

15
W2 A |} + BUe — nlmla;[(A + Imﬁl") < 4.
In the case |z| <1,

ni2(A |zt + B) < 4, .

Therefore in both cases |y|'® < A,(|z[+1). Since 2|z| < |z2+ 1, we have
ly["* < Ai(Jaf +2|2|+1) < 243(Jef +1). Similarly [3]"° < 4,(z|+1), 7"
< 24%|zf*+1). By virtue of the above inequalities we receive

Ly| @]+ Ly|y " + Ly | [ + Ly < Ly |#] + Ly
Ly|af* + Ly|y [ + Ly g + Ly < Lol el + L,

L,,L,, L,, L, being certain positive constants. It means that for func-
tions i, u of class Z; inequalities of form (3.4) are satisfied. This

completes the proof.
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§ 5. A certain theorem on the existence of a solution of
the (FI)-problem. As in paper [6], we will prove the following

LEMMA. For K > L nly+4 and k, > 0, the inequality
2m L, -
H(z, l; K)

L L _ 2
Hz, i K ik _exp(—kylx[?)
holds for (x,t) e DR, where hy = (1—9)/u(K +k), 0 <y <1, u(K) is
defined by (3.5), and v(K) by (3.6).
Proof. By virtue of (3.6), v(K + k) > »(K). From (3.5) it follows

that for K > 5%7; I/EI%-I_—%, ky > 0, we have u(K +k,) > u(K). Hence
0

H(z,t; K) K|z[? K|z[? Feol |2

Hz, t; K 1 ky) eXp{l—M(K)t‘1—y(K+ko)t'1—y(K+ko)t+
+[v(K)—v(K+Ek )]t} < exp{— kol2}” < exp(—lko|z[?)
ol A 1—u(K+Tk)t) ~ o

The lemma is thus proved.

Let us put Qp = Xr+ Cr, Qp = Zh+ Ck.

HypoTHESIS (H). Let @z,t) (i =1,...,n) be arbitrary continuous
functions belonging to class E, in the domain D. For every R there exists
a parabolic solution ui(x,t) (¢ =1,...,n) of (1.1) reqular in Dg and.such
that ui(x,t) = Dz, t) (1 =1,...,n) in the set Qg.

We write fs(z,t) = Fs(z,t,0,0,...,0). We will prove

TueoreM III. If

1° the (H)-hypothesis is satisfied,

2° system (1.1) is parabolic with regard to all the solutions mentioned
in hypothesis (H),

3° the functions fox,t) (s =1, ...,n) belong to E,,

4° the functions Fs (s = 1, ..., n) satisfy the (L)-condition,

5° @iz, t) (4 =1,..,n) are arbitrary given funclions, defined, conti-
nuous, and belonging to E, in X

then

1. there exists a solution of the (FI)-problem in D" (see § 2), where
hy s sufficiently small (defined as in the lemma),

2. this solution also belongs to class E, in Dho.

Proof. Let us choose n functions @z, t) continuous and of class
E (M, K,) in D, so that ®yx,t) =@izx,t) (i =1,..,n) for (x,1)e 2.
We may assume that all the functions gq¢z,t), Pix,t) and fi(z,?)
(1 =1, ...,n) belong to E, (M, K;) with the same constants M and K,.
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Let {R,} be an increasing sequence, R,—>oco as a—>co. Let us fix
natural numbers a and g, > a. By wui(z,t) (i =1,...,n) we denote
a solution of (1.1), determined and regular in Dg,, which satisfies the
condition

ug(@,t) = Py(x,t) (¢=1,..,n) for (2,t)efRr,.

According to the (H)-hypothesis such a solution exists.
Similarly we define uf(x,?) (i =1, ..., n) in Dg,.
For the functions «3(z,t) (¢ =1, ..., n) we have in Dpg,

9 a2 a
’u,s Us ) (3:1,,._,'",).

O a
(5.1) ——Fs(m t ’Ml,awj ax]—awk

Next, we introduce the functions v}, v} determined by the relations
(5.2) wi =viH(x,t; K), ! =vH@, t;K) (i=1,..,n),
where H(z,t; K) is defined by (3.2); at the same time we choose

1 nLy+ 2
(5.3) K > max (Ko, 2 ]/ ” ) .

The functions #; satisfy the system

(5.4) 6'08H+ 88H=

aar ODg OH 82 ot oH ovioH . ., °H
F‘(’”’ tooiH, H+ 3w, o, 8mkH+aa:k a_a?+aw o " “owsomn]
v H ovg oH ows0H , 0H
—F;(Z', ty v H’ ox H T s 0+ a_d}j-; 6_933: Y o, 350]' B:c,, vsamjawk) T

avs oH ot oH ovieH ., °H
+F,(:n b il H+ s ou; 0+3—:v;587r7j+6mj dxy, ”sam,-aw,, N

—Fs(a:, t,0,0,..,0)+Fyx,t,0,0,..,0).
We consider the part D* of D contained in the strip 0 < ¢ < h, where
h < T will be determined later. We retain the notation of the domains
and their boundaries introduced in § 3.

Since the functions @iz, t) belong to E,(M, K,), in Q’,',,a each func-
tion v; satisfies the inequality |vi(z,t)|< M (¢ =1,..,n). We put

A, =max sup |vi(z,?)].
@heDy

First of all we will show that, for every a, |vi(z, ¢)| < M in the domain D—hRa.
There exist an index 4, and a point (&, t.) € Dk, — (D, + Sk,) + 2%k, such
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that A, = |[05,(%, ta)|. If (2, t.) € 2%, then our assertion follows from
the preceding remark. Suppose, therefore, that (z.,1,) eDR°+ SRa If
v5, (2., t.) > 0, then at the point (z,,t) we have

m

ovg, ov; . Y o
> a pum— = ese a <
pral 0, 7y 0 (j=1,..,m) as well as ?1 5, awk/‘lj/lk 0
) =

for any real vector (4,, ..., ). Substituting * = x,, ¢t =, in the equa-
tion with the index i, of (5.4) and taking advantage of the definition
of parabolic equations, we find that the difference of the first two terms
in this equation is non-positive. The difference of the next two terms
is estimated according to the (£)-condition and we obtain

oy, _ oH
ta o la \ ! i
6:5) o< Yoy M2+ (mlal +L) ) i
7,k=1 j=1
aH

4+ (Ls| @]t + Ly)nH — —| + fi(%ay ta)

where f{(z, 1) H;f;a(w ¢) Since f,nm,t)e (M, K,), it follows from

(3.2) and (5.3) that |f(@., t)] <
The constants u(K), »(K) in the function H (x, t; K) and the number
h(K) can be chosen—in the same way as in the proof of theorem I—

in such a way that the expression between the brackets in (5.5) is smaller
than —1-H. Therefore at (z., %) we have

o )
0 << o+ M,

whence v (%,, %) < M. If v} (z,,t) <0, then similarly it can be shown
that o7 (24, ) > —M, and hence, finally, |vi(z,t)|<M (i=1,..,n)

in the domain D’I‘qﬂ. M does not depend on a; thus we have also

|z, )| <M (i=1,..,n) in D,
We put
(5.6) uf =uf—ul, P =oi—ol.
Consequently,
(6.7) uf =v¥H(w,t; K) and |7 < in the domain 17;‘;“

For the functions u,uf,u? (i =1,..,n) we receive the system of
the equations

ou? . Out ol of oud ol
(5-8) at _Fs($’t’ui’7m’6mjawk —Fs\@ Y 5y aa,-,am,,
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Further, we introduce the functions 5?, i according to the relations

(.9) ui=viH(x,t; K-+k), ui=0oiH(@®@ t;K+k) (5=1,..,0),

k, being a positive constant. Writing o; = 0;—12}, we get

(5.10) uf =P H @, t; K+k) (i=1,..,n).

In view of (5.8), (5.9) and (5.10) we obtain for the functions 5}', 5f, 2

the system
ap0H

Y
ot L0

(5.11)

*,,dH &t - vy 0H av,,aH xo aH)

a'v.q
F
,(:v t, viH H+ *om;’ oxj0my omy, 0x; | oxy 3£L‘k+ * a0y,

ov° . aH LA 902 0H  90°

—F m t uH- sH a 8 s a

"( v To ox;’ dw,;0m; | Omy Ox; Bw, am,, 8m,am,, T
afv,, «0H 0 vy oH | 9%, aH 2a &H
F H, H

+Fi\w, 1, 0 o, L T o amyom T oy 5m; 7w, 0w T myemn)
d oH &*0° 22 0H ovheH o*H

_F.( t, o/ H, ””H+ P, o 00y OH | sy FH

3.’131 3{2:;3{!7]; 3w]; 3:1;‘_1 3:17; 3wk 3:1);3:1}1;

Let us write
Auﬂ = max sup ]vtﬁ(w t)l ’
(:c.t)eDh“

where kg, 0 < hy < h, will be determined later. There exist an index t.
and a point (Zs,t.,) € DX = (DR +S8)+ TR + 08 such that Ag
= |5§f,,(:vap, tss)|- By an argument similar to that in the proof of theo-
rem I, we show that, for a convenient choice of u(K),» K) and h,, if
(Zp 5 tap) eDRa+S"R‘:,, then v,,,,(m.,,,, tag) = 0. If (@5, ts) € 22, then by the
definition of %; we have also via,(a:ap, t,s) = 0. If finally (&g, tap) € CR,,,
then by (5.7), (5.10) and by the lemma we have at (zu, sp)

a 2MH (z,t; K .
|v 0 vz z, 1) < S Hiw, t(; I’(-’}—ko)) < 2Mexp(—Fkolzf)) (i=1,..,n).

Thus we have proved that the inequality

(5.12) |08 (¢, t)| < 2Mexp(—koR2) (i =1,..,n)

holds true in D_?;':,.
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Now let r be an arbitrary positive number and let us consider the
domain D!. We choose a so that R, > r. By virtue of (5.10) and (5.12)
we find

[u‘}’(m, t)| <2MNjexp(—Fk,R)) (i=1,..,n) for (z,t)e D_:"',
where N, = maxH(z, t; K +k,). Hence it follows that for every &> 0
ol
there exists an index ay¢), Rs, > 7, such that for f > a > a, the ine-

qualities
luf —ufl <e (i=1,..,n)

hold for (z,1) e IT". It means that the sequences
(5.13) {ui(z, 1}, {ua(z, 1)}, ..., {un(z, 1)}

are almost uniformly convergent in Dk as a—>oco. Observe that the limit
functions U,(z,t), Uy(z, 1), ..., Un(z,t) of these sequences belong to
class E,. In fact,

Ui=limui =limv;H(z,t; K) (i=1,...,m)

a—0 a—o0
and |v;| < M for every ¢ and a, whence

K|z
1—ul

[ Uiz, t)| < Mexp‘ +vt} (t=1,..,n), gq.e.d.
Now we will show that the functions Ugz,?) (¢ =1, ..., %) constitute
the solution of the (FI)-problem in D. Obviously

Udx,t) = p(z,t) (i=1,..,n) for (z,t)eho.

It remains to prove that Uiz,?) (¢ =1, ...,n) is a (parabolic) solution
of (1.1). It is sufficient to prove this in the domain D}® for an arbitrary
r. Let wi(x,t) (i =1,...,n) be a parabolic solution of (1.1), regular
in D}°, satisfying the condition w}(z,t) = ¢iz,t) (4 =1, ...,n) for (z,1)
€ XM and identical with Uiz, ) for (z,1) € C'. From the almost uniform
convergence of sequences (5.13) it follows that for every & > 0 there is
an index g,(¢), R,, > r, such that for a > a, the inequalities

a S .
(5.14) lU,—u‘I<m (‘l—l,...,‘n),
where N, = maxH (z,t, K+ %,), hold for (z,1) eD_',"'. In the set Q% we
ol
have U; = u;; therefore
r a 2 .
(5.15) Jui—ui| < ¥o+1i (¢t=1,...,n) for a>a, (z,1) Q.

18*
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The functions

*1: _ U ~ *c.[ — ’u,g #1‘-,1 — ?,:_l’h?
(G16) % = g Rk U T H@, Rk M U

fulfil a system similar to (5.11). Let us put

A =max sup lv Yz, t)].
(:ct)cD""

There exist an index ¢,, and a point (xm,tm)eD"" (D0 4 Sho) 4 Qle
such that A, = |0/ (T, tm)l Reasoning as before, we find that if
(Tray tra) € DI+ 82 then 7(@raytra) = 0. If (Tra, bre) € 2°, then from
(5.15) and (5.16) it follows that

>

*ra
| Virg(@ray tra)| < V.1
Consequently,

&

[5 (x t)l<N+1

(1=1,..,%)

everywhere in D—',"’ . Taking into consideration (5.16), we have

Ne
N, +1°

|ui —uz| <
Hence and from (5.14) we receive the inequalities
|Ui—ui| < |Us—ug| +|ui—ui| <e (i=1,..,n) for (z,1) 55-’,'",

which means that Ugx,t) = «i(x,t) (i =1,...,n) in the domain D.
Therefore Uz, 1) (¢ =1, ..., ») is the solution of the (FI)-problem in Dh.
As we have proved before, this solution belongs to class E,.
According to theorem 1 the functions Ujx,t) (¢ =1, ...,%) con-
stitute the unique solution of the problem in question.
If the domain D is the whole strip

D{—oco<zi < 40 (t =1,...,m), 0 <t < T},

then theorems I-I1I remain true for the Cauchy problem, i.e. the prob-
lem of the existence and uniqueness of the solution wi(z,%) (4 =1, ..., n)
of system (1.1), satisfying the initial condition

ui(x, 0) = @ix) (t=1,..,n),

where the initial data gi(z) are continuous functions, defined and belong-
ing to class K, on the hyperplane { = 0.
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