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An example of a continuous function without the usual,
the approximative and the distributional derivative

by ZpzistAw DENKOWSKI (Krakow)

Abstract. A real continuous function defined on the whole real line is construected.
Then it is proved that the function does not possess a finite usual, approximative
or distributional derivative (in the sense of Definition 1 and 2 below) at any point
of its domain.

1. Introduction. The classical examples of a continuous function
without a finite derivative at any point of its domain, given by Weierstrass,
van der Waerden and others, can be found in many text-books on mathe-
matical analysis or theory of real functions (cf. for instance Sikorski [2],
X, § 8).

It is natural to ask whether it is possible to construct an example
of such a continuous function which, moreover, does not possess a finite
approximative or distributional derivative at any point of its domain in
the sense of the following definitions.

DEFINITION 1 (cf. R. Sikorski [2], X, § 9). We say that a function
g: I->R, where I is an interval in R = (— oo, + o), has an approxi-
mative derivative k € R at a point x, € I if and only if thereis a set F = I
such that

(i) x, is a point of density of F, i.e.,

tim @nF) 1,
ZpeQ IQl
1910

where |Q| denotes the length of an interval @, m denotes the Lebesgue

measure,
(i) g(@o+ ’2 — (%)

DEFINITION 2. We say that a function g has the distributional deriva-
tive k € R at a point z, if and only if the distribution ¢’ has the value

—~k as h—0 and z,+h e F.
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k at the point x,; i.e. (cf. S. Liojasiewicz [1])

limg’(xy+ ax) = k.
a0

The first example of a continuous function without the distributional
derivative at any point of its domain was given by Z. Zielezny [4]. In
[3] H. Swiatak has constructed a class of continuous functions defined
on R without the usual, the approximative and the distributional de-
rivative at any point z, € R.

In this paper we also give (in Section 2) a construction of a continuous
function defined on R which does not possess the usual, the approxima-
tive and the distributional derivative at any point z, € R. The idea of this
construction is very geometrical and it is quite different from that used
in [3]. Moreover, our function does not enter into the classes considered
in [3] and in [4].

We start with the geometrical interpretation of the behaviour of
the difference quotient. Namely, the necessary and sufficient condition
for the existence of a finite derivative g’(z,) = %k is that

9 (2o + ax) —g(z,) N
a

kx

-almost uniformly (i.e. uniformly on each compact set) when a—0. Hence
we obtain the following

LEMMA 1. If g’ (%) = k € R, then the convergence

(1.1) A [g (wo + ;) — g(wo)] —~kz  when A~ -+ oo

18 almost uniform (a.u.).

It also appears (see Lemma 4 and Lemma 5 in Section 3) that con-
vergence (1.1) in measure and in the distributional sense is a necessary
condition for the existence, respectively, of the approximative and the
distributional derivative ¢'(z,) = k € R (we adopt the same notation for
the derivative in all cases).

Thus, in order to obtain a function f with the desired property it
suffices to construct it in such a way that the graph of its homothetic
function z—A[f(z,+x/1) —f(x,)] (where z, is any fixed point of the domain
of f) should pass through two “disjoint” (in the sense of Lemma 3) par-
allelograms RE,;, R,, for 1 = 4,,» =1, 2, ..., where {4,} i3 some sequence
increasing to infinity (4, 7 4- o0).

This will imply that convergence (1.1) (with g replaced by f) is impos-
sible in each sense under consideration (neither a.u. nor in measure nor
in the distributional sense).

The construction of the function f is given in Section 2. Using some
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auxiliary facts obtained in Section 3, we prove in Section 4 that the con-
structed function f has the required property.

This result was essentially obtained by the author in the diplome
paper. The author thanks Professor S. Xiojasiewicz for indicating the
problem and suggesting the idea of construction.

2. Construction. Let ¢ be a fixed positive number and let 4 denote
the interval [0, 1]. We fix positive numbers ¢ and A, and suppose that
they fulfil the inequalities

(2.1) a>de, A >1.

Now we define by induction a sequence of functions {f,(-)}..;. .. :
we put

a
fl(m) = T sinll21ra:, T € R,
1
and supposing that the function

u—1
Sfur(z) = Z Ta-sinl,va, zeR
r=1 4

with some 4,> 0 is already defined, we construct f, as follows: We fix
2 point z, € R. Notice that f,_, has a finite derivative at the point ,:
=1
fua(@) = D) 2macosd,2nm, =: k,_;.
y=1
Hence and from Lemma 1 it follows that for our ¢ and 4 there is 1, such
that

(2.2) ‘l[fy—l(wo—'_ﬁ) “fa—l(a’o)] —ky 1@

2 <e forl}i,,,:ved.

We may find such 1, by means of the mean-value theorem :

|A[f (w+§) —f,,_l(wo)] ~kuese)

u—1

u—1 .
O, 1 .
= l°2n%—;% - A,c08 (1,21:(:00—}— “;1 w)) —2nachosl,2nwo

ve=1

0, 18 0.,_.0,_,
= [2maz-27 "; i le,sin(Z,'Zn (wo—l- —”l;—lm))‘

6,0 p—1
<4ﬂa—1—'\21,, \

=1

where 6,_,, ©,_, are suitable constants from the interval (0, 1).
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Thus, in order that inequality (2.2) be fulfilled, it sufficies to put

-1

- dn2a N
(2.3) Ay = D4,

v=1

Then, setting

(2.4) %, = max (L,, 2“/1,,_1-3)
E

we find that

(2.6) Ay>24,,>1,

(2.6)

Now we put

a
(2.71)  fu(@) =fus(®) + - 5ind,2m0 — Zf—smz,zw; zcR,
L

v=1 #

and the process of construction can be continued. We thus obtain a se-
quence {f,},_1.,.., which is uniformly convergent on R, because its

majorant ) ¢/2” is convergent in view of (2.5) and (2.6). Hence the function

v=1
(2.8) flo) = Z;—Sinl,%m; z R,

is continuous as the limit of the uniformly convergent sequence of continu-
ous functions.

Remark 2.1. Though the point z, was used in the construction
of the function f,, it follows from the construction that neither f, nor f
depends on z,; thus z, could have been chosen arbitrarily in R.

3. Auxiliary results. To show that the continuous function f given
by (2.8) has the required properties we need some lemmas.

LeMMA 2. If 1 is an integer, then the following inequalities are fulfilled:
(3.1) sin(y+2nz)—siny < —1  for y € [2xnl, 2nl +3x), ¢ = 2
or for y € 2nl+3w,2xl+ =), ® = §,
(3.2) sin(y+2nz)—siny =1 for y € 2nl+m, 2nl+3n), # = §
or for y e [2nl+3x, 2nl+27), @ = §.
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The proof is straightforward and elementary, and therefore, omitted..
Before we formulate the next lemma, we give the following

DEFINITION 3. We say that a real function ¢ defined on a set contain--
ing an interval [p, ¢] passes through the parallelogram

Z={=zyeRp<e<g,kt+tAd<y<krtB}
(with some constants k¥, A, Be R, A < B) if the inequality
kv+ A4 < g(v) < kv + B

is satisfied for x € [p, ¢].

The lemma which follows is very simple, but it is crucial for the proof
of the theorem below.

LemMMA 3. If a function g passes through two parallelograms
R ={z, ) eR;p<ao<qkr—A<y<ks+A},
By = {(x,y) e R r<ax<s8,kx—C<y<kz-—B}
(or Zy = {(z,y) e R’ <o <8, kx+B <y<ka+C'}),

where the constants k, A, B,C,p,q,r,s (B',C',r",8') satisfy the in-
equalities

0<A<B<(C (0<A4A<B <),
0<r<s<p<gq ((0<r<s <p<yg),

then for any linear function y = mxz we have

(3.3) mx—g(x)| > either for x € (p, q] or for x € [r, 8] (w € [r', 8']).

Mlm

Proof. We prove the lemma only for the pair £,, £, of parallelograms,.
since for the pair #,, %, the proof is quite analogous.

We set M = (p,kp—A), N = (s, ks —B). It is easily seen that the:
graph of the linear function

y =(k_A+B)w

p+s8
passes through the origin and through the point

p+s kp—A+ks—B
2’ 2 )

HAM+N) = (
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Now we observe that

A+B B—
(k—. ;if)w—(kw—B)>B— ;; 8 = 2A 2% for z € [7, 8],
A+B\ _ A+B B—A _ e ,
(lp — AY— [ — == > p—A = > —
(kz—A) (k p-l—s)w op P 2 5 for x € [p, q]

Hence and from the assumption that
g(z) < kx—B ifwe [r, 8] (g passing through £,),
gl#) = kr—A if v e[p, q] (g9 passing through Z,)

we get
A-+B €
(k— s )w—g(m);a when x € [, 8],
A+ B €
g(w)—(k-— Py )w>5 when x € [p, q],
. ) . A+B
which proves the lemma in the case m =Fk— j)—l—s . To complete

. A+B
the proof it suffices to observe that for m different from (k— + )

p+s

inequality (3.3) has to be satisfied either for z e ([r, s] or for = € [p, ql.
Now, we give two lemmas which provide a necessary condition for

the existence of the finite approximative and the distributional deriva-

tive, respectively, at a point z,. '

= LeMmMa 4. If a real function g defined on R possesses the approximative

derivative equal to k € R at a point x,, then

(3.4) z[g(wﬁ;)—g(w‘o)] M kw  as A->oo,

where the symbol ™ denotes the convergence in measure in any finite interval
A.

Proof. For the proof we need to show that

(3.5) lim m ({x € 45 |1A[g(#o+3/A) — g()]1— kx| = €}} =0
Ao
for any ¢ > 0 and any compact interval 4 (m denotes the Lebesgue meas-
ure).
According to Definition 1, the assumption of the lemma implies
that there is a set F = R such that z, is the point of density of F, so we
have '

\F .
{3.6) lim m(@NF) =0 (@ is an interval).
IQI—ao lQl
105
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Similarly, by condition (ii) of Definition 1 we get

9(@o+0]3) g (a0)

-k, as i—>0,:co+£eF.
x|2

2 2

Hence, for any ¢ > 0 and any finite interval 4 there is 7 such that
(3.7) [Alg(wo+@/A) —g(wo)]—kal <e if A=1,4€ed and w,+o/AeF.

Let us fix e > 0 and A = [#, w]. Suppose that 1 in (3.7) is found just
for these ¢ and 4. We set

v = max(|u|, [w]).

From (3.6) it follows that for »/2v there is § > 0 such that
(3.8) m(QNF) < %wl@] it only |Q] < & and @, €Q,

where 7 is a positive constant.
Let us consider the family of intervals

Q. = [wo—v/A, m+v/A] (A>0).
It is easily seen that
(3.9) To€Q,, Xpt+x/ieQ, for xzed, @, =2v/A.

Setting
Ay = max(, 20/8),
we obtain by (3.7)

|Alg (0o +®/4) —g(@o)] — ko] <& for A= 4,
if ved,xy+x/AeF. Hence, the condition
1ALg(wo+2/A) —g(zo)] —km| > ¢ for A=Ay, zed

mplies that
To+x[A € Q\F
and, consequently,

(310)  m({w & A;1A[g(wo+2/2) — g(wo)] — k| > £}) < A-m(Q;\F)

for 1> 4,.
In turn, by (3.9) we get

Q.1 < 8 for 1> 2,
which, owing to (3.8) and (3.9), yields the estimation

A-m(Q\F) < 1-5’;— Q2] = 7.

The last inequality together with (3.10) completes the proof of the lemma.
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LEMMA 5. If a continuous real funciion g defined on R possesses the
distributional derivative equal to k € R at a point x,, then

Alg(xog+x[/2)—g(xs)] converges to kx as A—oo

in the distributional sense, i.e.,

+ oo

+ oo
(3.11) [ ilg(@e+2/2)—g(z0)]-¢(@)ds—~ [ ka-g(z)ds,

a8 A—>o0, p € 9, where D denotes the set of all infinitely derivable functions on
R with compact supports.

This lemma is a version of Lemma II proved by H. Swiatak in paper
31

4. The main result. Now we are in a position to prove the following

THEOREM. The function f given by (2.8), with a and 4, satisfying con-
ditions (2.1) and (2.4) (with u replaced by v), is continuous on R and does

not possess a finite usual, approvimative or distributional derivative at
any point z, € R.

Proof. The continuity of f was already proved in Section 2. For the
second part of the assertion let us consider the expression

(41)  Alf(wo+®/2) —f(@o)] = AF,(w; 2) + AFy(@; 1) + AFy (w5 2),

where «, is a fixed point of R, 41 > 0, and

u—1

u—1
(w3 d) = Zzi sin (a,zn(mo+ %)) — Zaﬁ sin 4,2 iy,
v=1 y=1 v

v

Fy(a; 4) = &i sin (/1#27: (wo—]—%)) - 7“- sin i, 2na,,
u o

O a @ 3 a
Fo(w; 3) = Z - sin(l,2n(mo—|—7)) — 2 - 5in 2,27,
v=p+1 " v=p+1 "
In view of (2.6) we obtain the estimation:
A\ e A«
MFa(w;l)|<2—a—’: Z o =l_#?_" zeR,
v=pu+l

and so we have

A
(4.2) AIFa(w;A)Igz—- for u=>3, xeR.
7
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Owing to (2.2) (we may consider the point z, in Section 2 as that fixed
above — compare Remark 2.1) and (2.4) we get

(4.3) AR (z; A)—Fk, ¢l <e for A=>1, zed =10,1].
Directly from the definition of F, (2, A) we have
(4.4) A Fy(1; A,) = 0.

Similarly, from the definition of F,(x, 1) and from (2.1) we obtain,
by Lemma 2, the inequalities:

AF (3 4)< —4e  if 1,2nra, € [2nl4-4m, 20l 4 x),

2,Fy(};4,) > 4 if 2,2n, € [2nl + in, 271 +27),
(4.5
(4.5) AF(354,) < — if 1,272, €[2nl, 27l +37),
AL (25 1,) = 4 if 1,2nz, € [2nl+ =, 2nl+37),

where ! is an integer.
Since the function z—asin2xz has a bounded derivative, it is uni-
formly continuous on R and we have the implication

| |asin2nz —asin2n2’| < }e.

€
{4.6 —z 0 =
(4.6) |:‘v 7l < 4-2na

Hence and from (4.4) we get
(4.7) AJFq(z; 1)< te for x €[l —¢/8ax,1].
Similarly, from (4.6) and from (4.5) we obtain

VP (25 1,) < —dette  if A, 27w, € (27, 2l +3x]

& e -
and J;E[%——Sj‘;,%-l—%] or if

A, 2nwgy € [2nl 44w, 2rl 4+ =] and me[i——,} __],
8a 8ar

(4.8)
AJFBy(254,) > 4e—Lte  if 2,-27x, € (27l 4=, 211:l+§'n:]

€
8ar

&£
and ze|2 3 4+ if
[ ’I+8an] or

E &
A, 2mxy € [2nl+§"r:, 2nl4+27] and z e [i — 80,1':’% + 8(11:]’

where [ is an integer.
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Now, we choose a subsequence {ug}s_y,,. Of {#}..,.. .. in such
a way that, for instance,

(4.9) 2.,,5-211:(1;0 € [2nl, 2nl+ =] for § =1,2,...

(in all the remaining cases the reasoning would be the same). Thus, in
view of (4.1) and from' (4.7), (4.2), (4.3), in which 1, and 1 are replaced
by }.,,ﬂ, we obtain the inequality

(4.10) }.,,ﬁ[f(wo—l—l—) f(wo)] ug-1'%

“p

Similarly, owing to (4.1) and from (4.8), (4.9), (4.2), (4.3), we have

(4.11) k,,ﬁ_lm —2a L A#ﬂ[f(wo—l-ai”ﬁ)—f(wo)]<kuﬁ_1-m—§e

for.uﬁ>3,we[i— * iy ]

8ar 8ar

From (4.10) and (4.11) it follows that whenever u; > 3, the graph of the
function

x
L4, [f(wo‘{" ‘—) —f(mo)]
(i Pus
passes (in the sense of Definition 3) through the following two paral-
lelograms:

£

B, = |09 B 1 <o <1 Ry e —te<y < hy ot
E £

.%zﬂﬂ {(m y) € R*; %__SE<:0<%+ Y kup-1'2—30 <y

< k”ﬂ_l‘l’—ge}.
These parallelograms satisfy the assumptions of Lemma 3 for any fixed
4z = 3 and for ¢ fixed in the construction of the function f (see Section 2).

Thus, by Lemma 3, for any linear function y = kz (ke R) the in-
equality

(4.12) rl,,ﬁ [f (:z:o + —) f(a:o)] —

is satisfied either for x e [2— 8: y 3+ ] or for z e[l——— 1],
T

provided y; is sufficiently large.
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Hence and from Lemma 1 and Lemma 4, respectively, it follows.
that the function f does not possess a finite usual derivative or a finite
approximative derivative at the point ;.

Since the point z, was arbitrary in R, the proof of the theorem in the
cage of the usual and the approximative derivative is completed.

In the remaining case of the distributional derivative, notice that
we can choose another subsequence of {uz}s_,, .. (preserving notation
for simplicity) in such & way that inequality (4.12) is fulfilled always
in the same of the two intervals, say, the second. Thus without loss of
generality we may assume that

A Aiﬁ) ~f(w)| - ko

&

(4.13) >

&
if 1— 1
xe[ 8ar’ ]

o]

for u, sufficiently large and for any k € R.
Now, let ¢ € 2 be such that

&

=0 if xeR\|1--—,1]},
8ar
@ ()
. £
>0 ifaxell— y 1}.
8ar

From (4.13) and from the continuity of f we obtain that for u, sufficiently
large and for any k € R the integral

_I‘” (%[f (wo + %ﬁ) —f (wo)] - kw) ¢ (@) do

is either greater than the positive number M or less than the negative
number (—J31), where

.Hence, condition (3.11) fails, so by Lemma 5 the function f does not possess
a finite distributional derivative at the point z,. Since the point z, was
arbitrary in R, the proof of the theorem is completed.
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