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An area inequality for quasi-subordinate
analytic functions

by P.dJ. EENIGENBURG* {Michigan) and J. WANIURSKI (Lublin)

Abstract. Let f(2), F(z) be non-zero analytic functions in 2] < 1, f(0)
= F(0) = 0. We say that f(2) is quasi-subordinate to F(z) if there exist two analytic
funetions ¢(z) and w(z) such that |p(2)[< 1, |w(g)]< 1, w(0) =0 and f(2) =
¢(2) F(o(2)).

Let A(r,f) denote the area of the region on the Riemann surface onto which
the disk {¢| < r is mapped by f(z).

In this paper we prove that if f is quasi-subordinate to F, then

@ AW, I<TmA(r, F).

The funection 7'(r) was determined by Reich [3].
The all pairs (f, F) for which equality holds in (i) are given.

I. Introduction. Let f(2) and F(z) be non-zero analytic functions
in |2| <1, f(0) = F(0) = 0. Then f(2) is called quasi-subordinate to F(z)
if there exist two analytic funections ¢(z) and w(z) such that |p(2)] <1,
lo(2)] <1, w(0) =0 and f(2) = ¢(2)F(w(2)). This definition was intro-
duced by Robertson [4]. In particular, if ¢(2) =1 (w(2) =2) we have
the concept of subordination (majorization).

Let A(r,f) denote the area of the region on the Riemann surface
onto which the disk |2| < is mapped by f(z). Golusin [1] has shown
that, under subordination, 4 (r, f) < A(r, F) for r < 1/l/§. Reich [3] has
extended this result by showing that for 0 <r <1,

(1) Ar, ) <T(r)A(r, F),
where
(2) T(r) = mr*™?

* The research of the first author was completed while ‘visiting the M. Curie-
Sklodowska University in Lublin, Poland, as a guest of the Polish Academy of
Sciences.
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He also finds, for each 7, all pairs (f, F) for which equality holds in (1).
In this paper we show that (1) remains true for quasi-subordinate
pairs. Furthermore, the pairs (f, F) for which equality holds (for some 7)

in (1) remain the same, with the exceptlon of the case r<1 /l/—

II. TEEOREM. Let f(2) be quasi-subordinate to F(z) in |2| <1, f(0)
= F(0) =0. Then A(r,f)<T(r)A(r, F), with equality for a given r
possible only under the following circumstances:
(a) r*<i, () =¢ and w(z) = 72.
(b) r2=14, ( ) ezther p(2) =& and w(?) =9z or
(ii) f(2) = One?, F(2) = Cz or
(iii) f(2) = Ce(az+2?), F(2) = C(z+ anz?).

(3)

m—1 m
(e) T< <W7fz)“0ﬂz’ F(zy =0 (m=2),
m
2 - 2
(d) r o (m = 2),

either f(z) = Cn2™, F(z) = Cz
or  f(2) = Cpz™*, F(2) = Cz.

In the above and henceforth C denotes an arbitrary non-zero complex
constant, la| <1, el =1, |5| = 1. Also, it is easy to check that each of
the above cases yields equality in (1). The proof of the theorem will re-
quire several lemmas. We first adopt the following notation:

= 2 a,z", F(2) = anz", w(z) = chz", () = Zdnz”.
n=l n=1 nesl =0

It is well known that

A(r,f) == Dlnla, ' A(r,F) =z Y nib,'r".

n=1 Nl

LeMMA 1. If w(2) # 52, then |a,] < |by], |cy} < 1.

LEMMA 2. |d,| < 1—|dy?, with equality only if ¢(z) =

LEMmMA 3. 2, @2 r?* < 2 |b 272,

k=1
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n n

Levmma 4. If s, = ) la,)*, 8, = D b then s, < 8,, with equal-
k=1 k=1

ity for a particular n implying that a,,., = dyc™'b,,,.

LEMmA 5. If {A,} are such that A, >0, 4, > A, (kK =1,2,...), then

Zﬂllk lag|* < Zo.?lk 1Byl
i=1

k=1

- LEmmA 5.1. Under the hypothesis of Lemma 5, and with s, and S,
defined in Lemma 4, equality in Lemma 5 implies

(lk—lk+l)(‘gk_sk) =0 (k =1,2,...).

LeMmMA 6. If
(1) f(2) = a12+aqg2® 3 F(2) = b2+ by2%
(2) lay| < |byl,
(3) lay|®+lagl? = [by|2+ bo|?
then

f(z) =Cn2% F(z) = Cz.

LEMMA 7. If ¢(2) = (42+B)(C2+D)~! is a fractional linear trans-
formation of |2| < 1 into ilself, then ¢ is onto if and only if

|4]*+ |B|* = |C|*+ |D|

LEMMA 8. (See Lemma 8 in Reich [3).)

Lemmas 1 and 2 are well-known consequences of the lemma of
Schwarz. Lemma 5 follows from Lemma 4, by partial summation. Lemmas
5.1, 6, and 8 are in Reich [3]. It remains to prove Lemmas 3, 4, and 7.

Proof of Lemma 3. Define G(z) = 3 g,2" by G(2) = F(w(2)).
nml

Since G (z) is subordinate to F'(z), we may apply the inequality of Little-
wood [2] to obtain

(4) Dllglr™ < ) bl
Jomm1 k=1

T

From f(2) = ¢(2)@(2), it follows that flf(z)|2d9< flG(z)l“dO. Hence,

—T

(5) Dl < Yg, e
k=1 k=1

Thus, (4) and (5) yield the desired result.
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Aithough the next result is due to Robertson [4], we offer a proof
in order to examine the case of equality.

Proof of Lemma 4. Let

sa(2) = Dmdt,  Baz) = Db, R,(:) = D b
k=1

kw1l kw=n+1

Then

sa(2)+ D) md* = 9(2) F(w(2) = (2)8,(w(2)) +9(2) By(w(2))

n+l

= p(2)8,(w(2) + D'bP*,  where b, = oot by,

n+1

and so on. We have

(6) 9(2) (0 (2)) = sa(2)+ D pfPe%,

n-+1

where p{™ = a,—b{®. In particular, p, = a, ,—dyc?*'b,,,.
Since (p(z’)Sn(w(z)) is quasi-subordinate to 8,(2), Lemma 3 applied
to (6) yields

n o n
Dlaltr Y pPret < 3 bt

k=1 n+1 Kwml

The proof of the lemma is complete, with equality implying a, .
= el by
Proof of Lemma 7. We first assume ¢(2) is onto. It is well known

that ¢(2) is of the form
., 2—a
2) = 6“—.
?(2) 1—az

Since |6¥]*+ | —ae®®* = 1+ |—a[%, we are done.
Conversely, suppose

(7) |4[2+ |B|* = |C]*+ | D~
Now, |p(2)] <1 implies D # 0, so that we may write
B A BC

By Lemma 2, it suffices to show that
A BC B

D D? D

2

?
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or, what is equivalent,

(8) |AD — BC|* = (|D*—|B/*)"
Now, lg(2)] <1 implies |4e® +B|* < |Ce® +D)?, V0.
Hence, from (7) we have

Re[e?’(DC—BA)] >0, V0,

and so DC = BA.
This yields

(9) ABCD = |C*|\D}*
and
(10) ABCD = |A}|BJ.

From (7), (9) and (10), we obtain

|AD —BC> = |A*|D?—2Re(ABCD)+ |B*|C}?
= |A|?|D*—Re(ABCD)—Re(ABCD) - |B*|C|?
= |AP|DI*— |0 | D — |A|B)*+ |BI*|C)
= |A*(|DI>—|B*)— |C*(|D|*— |BI*) = (ID*— |B[*.
It follows from (8) that the proof is complete.
We preface the proof of the theorem with a few remarks. For subor-

dination, Reich obtained inequality (1) using only one consequence of
subordination, namely

0 7}
2 Iani27.2n < Z Ibn|2r2n.

k=1 k=1

Since this also holds under quasi-subordination (see Lemma 3), his proof
of (1) is valid in our case. However, examination of the circumstances
under which equality holds is facilitated by a repetition of the first
portion of his proof.

Proof of Theorem. For any positive integer m,

m-—1

[,mrzmz |ak|2+ Zkla 12 Zk] [ [akl o 2 kiaklzr”‘ ,
k=1 k=1
hence
A(r f 2 Sy 2 k 2
(11) 21<m>|a P— > [(mr™ — k™) |a, '],
k=1 E=1
where

mr¥™  if 1<k<m—1;
Fer?® it k>=m.
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Similarly,
A ,r F o0 m—1
(12) = D AP b — D) [(mr™™ — k™) b, *].
k=1 k=1
By Lemmas 5 and 5.1, therefore,
o o0
(13) D APl < ) A byl
k=1 =1
. qs m—1. m
(14) S =s, for all k>m, providing o < P
or
(18) S, =s, forall k>m-+1, providing 7 —=—b .
m—+1
Subtracting (12) from (11) gives, by (13),
1
(16) ‘; [A(Tyf) —A ('r’ F)]
m—1 m—1
< D) (mPm— Tt oy — YT [(mr*™— Tr) |, ],
kel k=1

with equality possible only if conditions (14) and (15) are met.
By Lemma 8 (ii), (iii) and (iv) the last sum of (16) is non-negative,
and can vanish only if

‘qe m—1 m
17 a, =0, k=1,2,...,m—1, providing <r:g L’
or
-1
(18) 4, =0, k=12 .. m—2, i r2=mT.
Hence
1 m—1
(19) = [A(r,))—A(r, IS D [(me™ —Fr*) B[]
fom=1
m—1
= (mr*™=% —1) Y klbglPr* —ms*m? 2 [(Fer —1%)1bl"]
k=1 k=1

By Lemma 8 (iv), the last sum of (19) is non-negative, and can vanish
only if

(20) by =by =... =b,_, =0.
Therefore
m-—1
(21) —[A 7y f)—A(r, F)1< (mr*™ 1 —1) 37 Jolbyf*r*
k=1

< (mp?m=? — Zk balr — (mpm2 gy 2 E)

fe=1 L
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where the first inequality sign may reduce to an equality sign if (14),
(15), (17), (18) and (20) hold, while the second inequality may become
an equality only if either m =1, or #2 =1/2, or b, =b,,, =... =0,
r2> 1/2. From (21) we immediately obtain the desired relation (1). Only
the need for examining the possibility of equality in (21) remains.

Collecting the available information for this case, we are led to (3)
(¢) when

m—1
—<ri< y m=2.
m m+1
m
When r2 = m = 2, on the other hand, we obtain
m+1"’
f(z) = amzm+a'm+lzm+1y F(z) = bz,

with
(22) by = Ia’m|2+ | @ 4112

Since f(2) is quasi-subordinate to F(z), clearly

max |f(2)| < max |[F(2)].

lg|=1 12| =1

Hence, max |a,+ a,.,2| < [b;], and an appropriate choice of z, || =1,
|2 =1

gives
(23) || + @1 | < 1041

Squaring (23) and subtracting (22), yields the conclusion that either
|@n| =0 or |a,,,| =0, and therefore (3) (d) follows.

For »? < 1/2 it follows from (14) that |a,|* = |b,|2, Vn > 1. Choose »
minimally so that a, % 0. Then a, = dyci'b, so that [d,||¢,|® = 1. Thus,
|do] =1, l¢;| = 1 and we have ¢(2) = d,, w(2) = ¢,z The proof of (3) (a)
is complete. '

The only remaining case is 72 = 1/2.

Subcase (i). Suppose @(z2) =¢. We leave the trivial possibility of
w(2) = 5z, and assume w(z) % nz. By Lemma 1, |a;| < |b,| and |¢] < 1.
Applying Lemma 4 to (15) yields

(24) a, = doc¥b, (K =3,4,...).

Now, (15) implies |a,| = |b;| (E = 3, 4, ...), while (24) forces |a;| < |bsl.

Hence |a,| = |b,] =0 (k = 3,4, ...), and f(2) = a,2+ a,2*, F(2) = b;z+

+b,22. Furthermore, |a,|2+ [a,]2 = |b4]24- |b,|%, by (15); and f(2) is sub-

ordinate to ¢F(z). Hence, the hypotheses of Lemma 6 are satisfied, with:

F(z) replaced by ¢F(z); and we conclude that f(z) = One2, F(z) = C=.
This is the statement of (3) (b) (ii).
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Subecase (ii). Suppose ¢(2) = &. Then |d,| <1, and (15) and (24)
yield a, =b, =0 (k =3,4,...), as before. Hence, f(z) = a,2+ a,2?,
F(z) = b1z +b,y2% with |a,[2+ [ay|2 = [by]2+ |bo[2

By quasi-subordination,

1812+ 8,2%] < 1y @(2) + by 0(2)2] = [5,2D(2) + by22 D (2)Y,
where
D(2) = w(2)z™'; [P(2)]<1 Dby the Lemma of Schwarz.
Hence,

(25) lay 4 a52]2 < [by D(2) + by2P(2)2]2 < |by + by2D(2)]2
Replacing z by re*, (25) is equivalent to
(26) Q(r) < Re g(re®),
where
Q(r) = 3(la1]2— 15112+ 72(|az]? — |bg%))
and
(27 9(2) = 2(b1 b, P(2) — @, a,).

Note that Q(r) <0 with @(1) = 0. Hence, Reg(2) >0, |2| <1, for
if Reg(2,) < 0 simply choose r near 1 so that Reg(z,) < @(r»); the mini-
mum principle applied to (26) would then yield a contradiction. Since
g(0) = 0 it follows that ¢g(z) = 0 so that from (27) we have

51b2¢(2)‘—61a2 = 0’
or
Blb2w(2) —_ dlalzz.
We leave the case b,b, = 0 to the reader, only remarking that its
consideration leads either to ¢(2) = ¢ or w(2) = n2. Thus, we now assume

b,b, # 0 and obtain w(2) = @,a,(b,b,)"'2. To show that the coefficient
has unit modulus, we obtain from (25)

3, a,e? . @8 | G4, [
lal]2+2 Re(a1a2e‘ )+ a2 < |b1|2+2 Re blbz T ¢’ )+ |b2|2 7 | ?
b1b2 l blb2 I
or
| aya, 2
112+ lay|® < 1b,y)2 + |b2|2| = |
102
or
bs|2 < 1by|? 3,0,
T b,

Since |®(z)] <1, we conclude P(z) =1, or w(z) = 2.
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We then have f(z) = @(2)F(n2), where @(z) £ ¢ and |a,|2+ |a,?
= |b,[2+ [b.{% Thus,

a,2 -+ a,2? aitayz

= bt beniE ! bt by

@(2) is a fractional linear transformation of |2| < 1 into itsel, since if
a;b,m = a,b,, then ¢(z) would be a constant of modulus less then unity,

1 1
thus contradicting A (l/—_, f) =4 (—_-, F) Furthermore, |%a,|2+ |fja,|?
2

V2

= |b,[24 |b,7n|%, and so we may apply Lemma 7 to obtain

(28) @(2)

1+az’

From (28), it follows that f(2) and F'(z) are allowed to be of the form
f(z) = Ce(az+22%), F(z) = C(z+anz?).

@(2)

The proof of (3) (b) (iii), and hence the proof of the theorem is complete.
As Reich [3] remarks, T'(r) may written in the compact form

T(r) = max (kr*7?), 0<r<l1.
k=1,2,...
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