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On weak differential inequalities

by P. BEsALA (Gdansk)

A. Pli§ has proved a theorem concerning weak partial differential
inequalities of first order by means of the theory of ordinary differential
inequalities (the results are not yet published). Some theorems of this
kind for partial differential second order inequalities of parabolic type
have been established by J. Szarski ([6]). In proving of these theorems
the authors make no use of well-known similar theorems concerning
strong partial differential inequalities obtained earlier by J. Szarski ([3],
[4], [5]) and by W. Mlak ([2]).

In this paper we show in a simple manner that the theorems on
strong inequalities imply suitable theorems on weak ones for a wide
class of differential inequalities (Theorem 1). The proof is not based on
the theory of ordinary differential inequalities., From Theorem 1 and
from the theorems on strong differential inequalities we derive Pli§’s
and Szarski’s theorems concerning weak inequalities under slightly weaker
assumptions.

§ 1. Let D be a set (possibly unbounded) of the (n +1)-dimensional
Euclidean space of the variables ¢, 2, ..., x, situated in a zone 0 <1t < ¢,
(ty < +o0). Denote by I' an arbitrary fixed subset of the closure D.
In particular I' may be a part of the boundary of D.

Let us consider the following system of m differential second order
operators:

(1) Tz, .., 2m]

0%
Eg{—fﬂ(t7 X, Zl, .o

. 02, 0Zm 0%, *2m
gl 0%y ree oxy ! 0w 0xx L 0302 ’

i=1,,m;fy=1,.,n, X=(,.., ).

The functions fe(2, X, &y ..y Zmy Diy eers Pi'y Diky o5 Pik) are supposed to be
defined for (¢, X) ¢ D, the other variables being arbitrary.

D, and I, will denote the parts of D and I', respectively, contained
in the zone 0 <t <tj—e (0 < e <Ty).

We introduce the following hypothesis.
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186 P. Besala

(H). Suppose that the functions w(t, X), vi(t, X) (1 =1, ..., m) are
defined in D +1I" and have all the derivatives occurring in operotors (1)
in D and that for every (small) ¢ > 0 the inequalities

(2) Ti[thyy eeey Um] < Ti[V1yecy®m] (E=1,..,m) for (¢, X)eD,
and

(3) u(t, X) <vi(t, X) (i=1,..,m) for (¢, X)el,
imply
(4) w(t, X) <vft,X) (i=1,..,m) for (t,X)eDs.

We say that the functions fi(t, X, 2y, ey Bmy iy ooy DTy Drky ooey PIE)
satisfy the condition K[z, ...,2m] if for 51> % (I=1, ..., m) we have

(5) f‘(tax,zu-"’zﬂhp;r'-'11’;’&71’%9-"5?%)_
—filt, X, %, ..., 27"71’;’ -"71’?5 P;kr ---’Pi’z)
<oty 2,—2, ey 2m—2m) (t=1,..,m),

where the functions o¢t, ¥y, ..., ¥m) (¢ =1, ..., m) are continuous and
non-negative for 0<t<t, yi>0 and if the functions ) =20
(¢=1,..,m), 0<1t<t, constitute the unique solution, issuing from
the origin, of the system of ordinary differential equations

d .
(6) Ti%‘ = oty Yay -y Ym) (1 =1,..,m).

THEOREM 1. We assume that the functions

Jilty Xy 215 vevy Bmy Diy ooy BTy P}k, ey Pik) (E=1,...,m)

satisfy the condition K[2y,...,2m] and that hypothesis (H) holds true.
Furthermore we assume that

(7) Tuyy oooy ¥m] < Te[vyy eeoyom] (E=1,..,m) itn D
and
(8) ui(t, X) <ov(t, X) (i=1,...,m) in I.

Under these assumptions the inequalities
(9) u(t, X) <v(t, X) (1=1,..,m)
are satisfied in D.

Proof. Let y; = o}(t) (i =1, ..., m), > 0, be any solution of the
system

d .
(10) T =0l e Ym) +8 (=1, m),
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satisfying the initial conditions w}(0) = 6. From the well-known theorem
concerning a continuous dependence of solutions of ordinary differential
equations on the parameter and on the initial data (see for instance [1],
theorem 4.3, p. 72) and from our assumptions concerning system (6)
it follows that for any &> 0 there exists a J, > 0 such that for every
0 < 6 < 6, the integral y; = wﬁ(t) exists in the interval 0 <t <{,—e and
that w¥(?)—0 (i =1, ..., m) uniformly in this interval, as 0.
According to assumption (5) we obtain

s s Ov, o, 0% Aoy,
(11) f; (t, X, v+ o, ..., vm+wm’3m,- ' Gy ? Gaomy " Gy mn)
o, o, 20, vy

_fi(tr X, v,. )ga,-(t, W3y ey )

= Umy ow;’ " ow; ' omzomy’ T ow;omy,
(¢=1,..,m). By (1), (10) and by the identities

ok b _
360,' - 3w,-3wk o

(s=1,...,m; j,k=1,..,n)
we get

o0v; l
(12) Ti['vl+w'1’, ...,'vm—l—wf,,] =2 ~+ o4(t, w'l’, ey w,d,,)—}—é—

8 2 OV OVm %0, PV
ft(t’ X, vt ow, .., vm—}—wm,awj P bw; ? Omsdxy’ T OmsOmy

S ov; o, oy, 0%, oy,

Z o fi(tr Xy U1y eeny 'vm:‘a;ja "9 By Oy 0w’ 3a;,~6wk)+ d

= i[’vlj .,.,’l’m]+6 ("'r:l, ...,M).

The last inequality is obtained from relation (11). Relations (12)
and (7) yield the inequalities

(13) Ty, ooy U] < T, + 03, oy om+0h] (E=1,..,m) in D,.

Since wi(t) >4 > 0, we obtain by (8)

(14)  wuft, X) <oft, X)+wi(t) (GE=1,..,m) for (t,X)el,.
Therefore, by hypothesis (H), the inequalities

(15) ui(t, X) <wi(t, X) +wi(t) (=1,..,m)

hold in D,. Now letting 6 >0, we infer that inequalities (9) are fulfilled
in D,. Since & is arbitrary, our assertion holds true in the whole set D.

§ 2. In this and in the next paragraphs we consider some partic-
ular cases of the set D and the operators Ti. We now assume that D
satisfies the following conditions:

13+
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(a) D is an open set lying in the zone 0 < ¢ < t,, where #, < +co.
For every t',0 < t' < 1,, the part of D contained in the zone 0 <t <<
is bounded and the intersection of the closure of D with the plane
t =t is non-empty. The projection of this intersection on the plane
t =0 is denoted by S.

(b) Let t' € (0,1,) and let X' be an arbitrary point of Sy. To every
sequence f, (»=1,2,..) such that 0 <, <1, and #,—>t', there corre-
sponds a sequence of points X, so that X,eS§; and X, ->X".

Let I' denote the set of all points of the boundary of D for which
t <t

Suppose that for any ¢ (¢ =1, ..., m) the operator T; does not con-
tain the derivatives of the functions 2y, ..., 2i—1, Zi+1, ...y 2m, that is,

o2 0z; 0%z
(16) T2y ooy 2m] = —f‘ (t Xy 21y eeey "”aa;, 30}13;14;)

(t=1,..,m; §,k=1,..,n).

We assume that the system of operators (16) is parabolic in the
following very wide sense given by J. Szarski (ef. [6]): The system (16)
is called parabolic with respect to a sequence of functions z(f, X), ...,
2m(t, X) of class C! if for every system of numbers pg, D (Px = Prs,

P = Drs; j,k=1,..,n) such that 2 (pjk—pjk)ljﬂk < 0 for any real
vector (4, ..., An), the inequalities

ozi(t, X
f’l(ti X, 7t X), ..., 2n(t, X)a—j)’pﬂﬂ)'—

ozi(t, X) _ .
z‘( )Pﬂc)<0 (i=1,..,m)

—f.-(t,X,zl(t,X), zm(t X)r

hold for (¢, X) e D.

To begin with we quote the theorem stated by J. Szarski ([6]).

THEOREM (J. Szarski). Suppose that

1° the set D satisfies conditions (a) and (b),

2° the functions wi(t, X), vi(t, X) (¢ =1, ..., m) are defined and con-
tinuous in D +1I', have the derivalives duot, ov;/ot and continuous derivatives
0%u[0x;0xk , P*04f0m40my (0 =1, ...,m; §, k=1, ...,n) in D,

3° the following inequalities are fulfilled in D:
(A7)  Tifuyy ey um] <0  and Tyvy,..,on] =0 (1 =1,..,m),

4° uy(t, X) <oty X) for (¢, X)eT,

5o system (16) is parabolic with respect to the sequence {uit, X)} or
with respect to the sequence {vy(t, X)} (4 =1,...,m),
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6° the functions fit, X, 2y, ..., 2m, Ps, P) (2 =1,...,m) satisfy the
condition K[z, ..., 2m] (see § 1),

7° every function fit, X, 2, ..., 2m, pj, Px) (¢ =1,..., m) is non-de-
creasing in each of the variables 2y, ..., Zi_1, Zit1y ooy Zm,

8° every fumction oit, Yiy ..y Ym) occurring im (5) is non-decreasing
W Y1y oy Yio1y Yit1y ooy Yme

Under these assumptions the inequalities

(18) ui(t, X) <vilt, X) (=1, ..., m)

hold for (¢, X) e D.

We will show that in the theorem of J. Szarski the assumption (b)
concerning the set D and the assumption 8° can be weakened. The point
is we do not require the monotonicity condition 8°.

THEOREM 2. Let D satisfy condition (a) and let the assumptions 2°, 4°,
5% 6° and 7° of Szarski’s theorem be fulfilled. We assume that

Tty ey Um] < Tilvy, y0m] ({E=1,...,m) n D.

Then inequalities (18) are satisfied everywhere in D,

The proof of Theorem 2 follows immediately from Theorem 1 and
from the following theorem on strong inequalities proved by W. Mlak ({2]).

THEOREM (W. Mlak). Suppose that D fulfils condition (a) and that

assumptions 2° 5° and 7° of the theorem of Szarski are satisfied. Further,
suppose that

(19)  Tyuyy ey Um] < Ti[vyy eeyom] (E=1,..,m) for (t,X)eD
and
u(t, X) <vi(t, X) (@ =1,..,m) for (t,X)el.
Under these assumptions we have
u(t, X) <ve(t, X) (1=1,...,m) <en D)

By a similar reasoning one can obtain theorems similar to the other
theorems of J. Szarski (see [6]) concerning weak differential inequalities
of parabolic type in case where the boundary inequalities involve di-
rectional derivatives of the functions in question.

§ 3. Now let D be the following pyramid:

(20) O<i<ty, |z <bj—Mt (j=1,..,n, t,<min(dy/M)).

(*) This theorem was stated by Mlak for the case where D was a cylindric do-
main and instead of (19) the inequalities Ty, ...,%um]< 0 and Ty[v,,...,9m] >0
were supposed. But it is easy to see that the theorem is valid for the more general
set D satisfying condition (a), as well as under assumption (18).
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By I' we denote the part of the boundary of D lying on the plane
1 = 0. Let us consider the following system of first order operators

(21) T2y, v, o] = aa—zt‘ —f;(t, X, %, tm, :—;‘- _— %’) (6=1,.., m).

We will prove

THEOREM 3 (%). If:

10 wuy(t, X), ve(t, X) are continuous in D +I, have first derivatives
in D_and possess Stolz differentials at the points of the side surface of the
pyramid (20),

2° Tty eeey Um] < Tvyy c0eytm] (1 =1, ..., m) tn D,

3% (0, X) <n(0, X) (¢ =1, ..., m),

4° the functions fi(t, X, 21y oy Zmy D1y -ovy Pn) Salisfy the K[z, ..., Zm]-
condition (see § 1),

5° the functions f¢ satisfy the Lipschitz condition

If‘(ti X’ zl’ *t0? zm’ pl’ "‘DP”) _f‘(t’ X’ zl’ c** Zm, ﬁl’ *e? ijﬂ)l

n
<MD Ipi—Pl (=1,..,m),

i=1

M being the constant which occurs in the definition of the pyramid (20),
6° for every ¢ (1t =1, ..., m) the function fi(t, X, 2y, ..., 2m, D1y +oey Pn)

18 non-decreasing in each of the variables 2,, ..., Zi—1y Zit1y voey Zmy

then the inequalities

wilt, X) <o, X) (¢=1,...,m)

are satisfied in (20) (3).

The validity of Theorem 3 results from Theorem 1 and from the
following theorem established by J. Szarski (cf. [5], Theorem 1.1) for
strong inequalities:

THEOREM (J. Szarski). Suppose that the assumptlions 1°, 5° and 6°
of Theorem 3 hold true. Suppose furthermore that

i Tduyy .oy um) < T{01y .cco¥m] (t=1,..,m) in D
@
(0, X) < 0e(0, X) (¢=1,..,m).

(®*) This theorem was obtained earlier by A. Pli§ by means of ordinary differential
inequalities under the additional assumption that each of the funections oy(t, y,, ..., ¥m)
(¢ =1,..,m) occurring in the definition of condition K[z, ..., 2s] i8 non-decreasing
with respect to the variables ¥y, ..., Y1, Y1y coos Ym

(®*) I learned, after submitting this paper for publication, that Pli§ had also
applied a method similar to that of this paper.
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Then we have
u(t, X) <vi(t, X) (1=1,..,m) in D.

In particular, in Theorem 1 set D may be the one-dimensional inter-
val 0 <t <, (0 <?y < +o0) and I" may be the point ¢ = 0. Considering

the operators
dz,;

Ti[2yy cees Zm]) Eﬁ—ft(t, Z1y eery Zm)

and applying the well-known theorem on strong ordinary differential
inequalities one can obtain a theorem on weak ordinary differential
inequalities which in the case of fi(t, 2, ..., #n) continuous in ¢ is a par-
ticular case of the theorem of T. Wazewski (see [7], p. 124).

§ 4. Theorem 1 (and consequently Theorems 2 and 3) remain true if,
in place of the condition K[z, ..., 2n), the functions fi(t, X, 2, ..., Zm,
Pry ey DTy Piky o5 Pik) Satisfy the following weaker condition K [2,,...,2%m]:

For (¢, X) e D, arbitrary 2, ..., pnn and ¥ > 0 we have

(22) fit, Xy204+ Yy ey 2m Y, p}’ --wp;n’ p}ka -"’p;';?)—
—filty Xy 24y oory Zm, P:‘y ey DT P;k; o Pik) So(t,y) (E=1,..,m),

where the function o(f,y) is defined, continuous and non-negative for
0<t<ty, ¥y > 0. Moreover, we suppose that y(t) =0, 0 <1<, is the
unique right-hand solution of the equation
dy
a o(tyy)
passing through the point (0, 0).
The proof of Theorem 1 does not require any essential changes.

In particular, if we denote by y = w?(f), d > 0, any right-hand solution
of the equation

dy
F7] =o(l,y)+6

fulfilling the initial condition »?(0) = 8, then, instead of (11), we obtain,
by (22),

o o o a
3 Loy 21 m 1 . =) —

—fi(t,X,'ul, N )go(t,wd)

oy Vmy =4 .o vee
? I oy Y oxy ' dxsomy’ T Omydmy

fOl' (t’ .'B) G.D (i = 1, seey m)-
Under the assumption K2, ..., 2m] Theorem 1 involves the linear
operators with unbounded coefficients at the unknown functions.
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For example we consider the linear first order operators

n

325 i 32,: . i .
(23) Tiler, .oy om] = i — ( D, g+ g;bk(t, Da) (=1,.,m),

i=1
the coefficients being defined for
(24) 0<t<ty,, X being arbitrary.

Then the suitable functions are

(25)  ilty Xy 2y cevy Bmy Pry ooey D) =, ah(t, X)pj + D) bilty X)2s -
i=1

k=1

The theorem of J. Szarski concerning first order strong inequalities,
quoted in § 3 of this paper, may be transfered to the unbounded zone (24)
(see [5], corollary 1.1). A corollary to that theorem formulated for the
operators of form (23) reads as follows:

Suppose that in (24) aj(t, X) are bounded and bi(t, X) >0 for k 1.
Let wi(t, X), vi(t, X) (¢ =1, ..., m) be continuous for 0 <t <<ty, X being
arbitrary, have Stolz differentials in (24) and satisfy the initial inequalities

(0, X) <040, X) (¢=1,..,m).
Further, if

T{[ul’ seey um] < Tt[/vl’ ceny /Dm] (?: == 1’ vevy m) 'in (24:)’
then
wlt, X) <ovt,X) (i=1,..,m) in (24).

Applying this theorem and Theorem 1 with condition K[z, ..., 2m]
replaced by condition K[z, ..., 2s] we will prove

THEOREM 4. Let ui(t, X), vi(t, X) be continuous for 0 <t <, and an
arbitrary X, possess Stolz differentials in (24) and satisfy the inequalities

(0, X) <ve(0, X) (¢=1,...,m),
Ti[vyy eoey Um] < Ti[0y,y ooy om]  (E=1,..,m) in (24).

We assume that the coefficients aﬁ(t, X) are bounded in (24), b}',(t, X)

=0 for k #1 and

(26) Zbi(t, X)<C=const (i=1,..,m).

k=1
Then the inequalities

w(t, X) <o(t, X) (=1,..,m)
hold true in (24).
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Proof. We will show that functions (25) fulfil the condition
K2, ..., 2m). Indeed, for y >0 we have

filty Xy 204Uy eoey B+ Y5 Py oory Pa) —Tilty Xy 21y coey Zmy Pry ooy Pa)

= Dbit, D)y < Oy
k=1

The unique solution of the equation dy/dt = Cy issuing from the origin
is y(t) =0, q.e.d.

It is easy to verify that the remaining assumptions of Theorem 1
are satisfied.

Inequality (26) can be satisfied also for bi(t, X) unbounded in (24),
e.g. for the coefficients

bi = Aexp(p|X|%), k1,
b; = —(m—1) A exp(p|X|") +C,

A, p, q being constants, 4 >0, |X| = (3 a2,
i=1

The assumption K[z, ..., #n] does not embrace such cases because
the inequalities

f‘i(ti X’ zl? °*0y zm’ pl’ "',pﬂ-)—f‘i(t’ X’ 2.I.? *ecy E‘m’ pl’ ’"7P”)

b;,(t, X)(zk-zk) < Ui(t’ B1— 21y veey zm—'gm) ('i = 17 seey 'm’) ?

||
I3

with arbitrary #,Z,2x > % (K =1, ..., m) are satisfied if and only if

each of the coefficients bj(t, X) is bounded from above by a quantity
which is independent of X in (24).
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