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Some theorems on differentiable solutions of a system
of functional equations of n-th order
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Abstract. This paper contains two theorems concerning the existence and the
uniqueness of (7-solutions of a system of funetional equations

@i(z) = hi(2, {pj[fr(®)]}), =e€(0,a),4,j=1,...,m, k=1,...,m,

where fy, h; denote real functions of one and nm 41 real variables, respectively,
and @; denote unknown functions (Section 2, Theorems 1, 2). In Section 3 there are
given some conditions for the continuous dependence of O7-solutions on given func-
tions (Theorems 3, 4).

1. We start from some notational conventions: -

(a) m, n, r denote fixed positive integers;

(b) the indices ¢ and j run over the set {1,...,m}, while the indices
k,o,p and » run over the sets {l1,...,n}, {1,...,7}, {1,2,...} and
{0,1,2,...}, respectively; '

(c) the symbol {y;} denotes a vector belonging to the space R™",
namely

{?/ik} $= (Ysrs ey Ymis ooo3 Yiny o+ o9 Ymn)
and 0:=(0,...,0) e R™;

(d) the Greek letters y, ¢, », ®, ¥ stand for vector-functions defined
on subsets of B and with values in R™, for example

p(z):= {‘Pl (®)y.nry ’Pm(m));
(e) by €7, [4], A < R, we mean the class of functions y: A—R™

such that the functions y, have continuous derivatives up to order r
in 4. In the case m =1 we write ("[4]:= C][4];

(f) the letter I denotes the present interval (0, a), a> 0, and 2
:= I XR™",

The purpose of the present paper is to prove some theorems concern-
ing the existence of C"-solutions of a system of functional equations

(1) 9i(@) = ki(z, {o;[fi(@]), wel,
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and the continuous dependence of the solutions on the given functions.
In this system k; and f, are given and ¢; are unknown functions. In the
proof of the main result on the existence of C"-solution of the system (1)
we shall use Schauder’s theorem and apply the following

LemMmA 1 ([13]). Let a,; > 0. The system of imequalities

2 aij T < T
)

has a solution E;> 0 iff all the characteristio roois of the matriz [a,] are
less than one in absolute value.

Remark 1 ([12], [13]). Each of the equivalent statements in Lemma 1
is also equivalent to the following one:

d;>0 forl=0,1,...,m-1, A=1,...,m=—1,
where

o0 {l—azw A=u,
Ap * —
@ A#p, Lhp=1,...,m,

! 1
. — {c!l 1+lpt1 +0f1+1 WCrury A F oy
Ap *—

1 ! 1 —
CnCitr1u+1—Cat11C1 u41 A=u,
l=0,1,...,m—2, Lu=1,...,m—1-1

2. The fundamental theorems regarding the uniqueness and the
existence of C"-solutions in the case m = n = 1 are due to Choezewski [3],
[4] (see also [8], Chapter IV). This theory has been further extended by
J. Matkowski [10], [11], who obtained some result on the uniqueness
of C"-solutions of a system of functional equations. Other results regarding
these problems can be found in [7] and [5]. The theorems presented in
this paper generalize all the preceding ones except of that contained
in [7], which is of slightly different nature.

We assume that:

(2.) f,eO[I], 0 < fy(x) <@ for x (0, a);

(2.ii) h;e 0"[Q], R,(0, {0}) = 0;

(2.iii) all the characteristic roots of the matrix [} a;], where

k

| Ohy
e
are less than ome in absolute value;

(2.iv) there exist a number L and a set U, := (0, ¢;) X { —d,, d,)™"
such that for all (z,{y,})e U, 1=0,1,...,7, 8, =0,1,...,7—1, 8+
+...+8,, =r—1, the inequalities

(2.1) a,.jk 1=

(0, {01 £ (0))



System of funmciional equations 73

<L22|yjk Yixl
are sat;sﬁed.

Let us define functions k{ by the recurent relations

i@, {Y)) 1= (=, (93}), (@, {yp}) € Q5

7 h;

ol Dyyl ... By mm

(@ !{yjk})"' ,m - (@, {yjk})

o' @ f;l...

g—-1

0
hi(z, {f’/})k}a ciey {.'/;k}) = %2

(, {y;k}r » (Y% ch+

+D Z a:;;,]’ @, Wiy -+ Wi DY i @),

g=1 =1 g=0

(@, ks s (U5) € @XB™,
By induction we prove

LEMMA 2. If we have f, € C'[I], f.(I) < I, h, € C'[Q] and if ¢ € CT, [I]
18 a solution of system (1) in the interval I, then

(2.2) o7 (2) = b (2, {p;[fe(@)]}, ..., 7 [fi(@)]}), wel.

In particular, (2.2) implies that if ¢ € C,,[I] is a solution of system (1)
such that ¢,(0) = 0, ¢! (0) = 57 and if conditions (2.i) and (2.ii) are ful-
filled, then the system of numbers n; must be a solution of the system of
equations

(2.3) n; = hy(0, {0}’ {ﬂjlk}r ceey {ﬂ;k})a
where 75, = n5, 8 =1,...,0.
The following lemma shows the structure of the functions &].

LEMMA 3. If the functions f,, and h; belong to C"[I] and C"[£2], respect-
wely, then h; € O"[Q XR™°] and

(2.4) Iy(=, {?/;k}’ veey {(’l;k}) = Z(», {y;k}7 ¥ {yjk ) ) +Q:(z, {?/jk} {yjk}
where

28) Qo (v, WD : —22—(m W) ¥aLfi @)

g=1 t=]
and Z; e C"~°[Q x R™°-1],
Proof. Induction.

Now suppose that ¢ € O], [I] is a solution of system (1). Write ¢; in
the form

(2.6) @s(w) = Py(z)+y;(®), wel,
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where

2.7 Py(z):= %w’, zel.

Defining the functions
Hy(@, {ypd) 1= bi(, {PyLfi (@] +yp}) —Pilm), wel,

we observe that if f, e C'[I], h, e C"[2], then H, e C"[RQ]. Moreover,
y € C7,[I] is a solution of the system of functional equations

(2.8) yi(z) = H; (a;, 2 [fk(w)]})y vel,
fulfilling the conditions
(2.9) 7:(0) = #7(0) = 0.

Conversely, if y € Oy, [I] fulfilling (2.9) is a solution of system (2.8) in
the interval I, then for every system of numbers %] fulfilling (2.3) the
function ¢ € C},[I] defined by (2.6) and (2.7) is a solution of system (1)
in the interval I and the conditions

P(0) =0, ¢{?(0) = %]

are fulfilled. Thus we have the following

LEMMA 4. Let a system of numbers n; be a fived solution of (2.3). If
(2.1) and (2.ii) are fulfilled, then system (1) has exactly one solution ¢ € C},[1]
in the interval I fulfilling the conditions ¢;(0) = ¢\ (0) = 0 iff system
(2.8) has exactly one solution y e C,[I] in the interval I fulfilling (2.9).
These solutions are interrelated by formulas (2.6) and (2.7).

It is easily seen that all the characteristic roots of the matrix
)

oh ,
- (0, {O)[fx(O)T
= 0 iff all the characterisfic roots of the matrix [2
k

are less than one in absolute value and %,(0, {0})

oH ,

ot O, NGO
ik

are less than one in absolute value and H,(0, {0}) = 0. Therefore, in the

sequel we shall study solutions ¢ € O, [I] of system (1) fulfilling
(2.10) :(0) = ¢{?(0) = 0.

ayjk

If ¢ € C},[I] is & solution of system (1) in the interval I and if ¢,
satisfy (2.10), then, in virtue of (2.2), (2.i) and (2.ii), we obtain

(2.11) K(0, {0}, ..., {0})) = O.
Hence, on account of (2.4) and (2.5), we have

(2.12) :(0: {0}7 (e {0}) = 0.
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- TeEEOREM 1. If assumptions (2.i), (2.ii), (2.iii) and conditions (2.11)
are fulfilled and if, moreover, there exists a &> 0 such that
(2.13) ife@) <1 for xe(0, &),

then the system of equations (1) has exactly one solution ¢ € C, [I] in the
interval I, fulfilling conditions (2.10).

Proof. (2.ili) and Lemma 1 yield the existence of B, > 0 and > 0
such that

(2.14) D D@y +nR <R, O0<E<L.
F -

Since the functions Z] (see Lemma 3) and f; are continuous in 0 X
x R™°=1) and in I, respectively, then on account of (2.12), (2.1) and
(2.14), there exist numbers ¢, > 0 and d > 0 such that

\Z (25 Y}y - (U5 DI < By — 2‘ Z(Guk"*"’I)Rj;

(2.15)
la—i (@, W) fie(@)T | < @y +
for all 0<o<e, lypi<d, s =0,1,...,r—1.
Put
(2.16) 0:=min(e, 1, §,d)
‘and define the sets D c .QxR""'(”“’) D' = 2 as follow:
D:= {(w’ {y;')k}y ceey {yjk <e¢ |y;k| Rj: §=0,1,...,r—1},

D' := {(z, {y}); 0< 2 < c’ lyﬂ‘l By}

The functions Z7,f; and oh,/dy), are uniformly continuous in the
sets D, <0, ¢) and D’, respectively. Hence, for arbitrary &; > 0 fulfilling
the system of inequalities

22( Jk+’7)ej< &y

there exists a 8 > 0 such that

for every (z, els oo Wi Dy @y {Tiieks -+ {7;c'}) e D and
lz—Z| < 4, l'yjk il < 68, 8=0,1,...,7—1 we have the in-
equalities

125, Y}y oo W3 D —Z1(Ey {Ginds -y T D

(2.17) 1}[3 _22 (afjk"l"'))e]

3h‘

y (U0 [ ()] — @T‘ &, {H) i (@]
i yqt

i‘[es— 2 Z (“qk‘l"))ej]-
7k

g=1 =1
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In the space CT[{0, c)] we introduce the norm

(2.18) lwll : = max { sup |u(2)l, ..., sup [« (z)]}.
<0,c> 0,0

(C"[0,¢>1, II']l) is a normed vector space over the field R and the con-
vergence of a sequence of its elements (u,) is equivalent to the uniform
convergence of (u,) jointly with all the derivatives up to the order r in

{0, ¢). As is well known it is a Banach space.
Now, let X; = C"[(0, ¢)] denote the class of all functions fulfilling

the following conditions:,

(2.19) ;(0) = ¢i”(0) = 0;

(2.20) ¢ (z)] < B; for all z e {0, c);

(2.21) for arbitrary numbers ¢ > 0 such that ;‘%‘(am-;-n)e, < &,

the conditions z, = € (0, ¢) and | — Z| < 4, where 4 = &(s,, ...
vevy &y) 18 just as in (2.17), imply the inequality |@f"(z)—
- (@] < ¢

Now we define a transformation T by the formula

(2.22) T(p)():= (T1(@)(@)y -y Tm(p)(@)), @eXiX...XXy,
z 0,0,
where

(2.23) Ti(p)(@) : = hy(o, {p,[fi(@)]}), @ €<0,0).

We shall show that the set X, X...xX,, and the transformation T
satisfy all the assumptions of Schauder’s fixed point theorem. First we
prove that for ¢;, ; € X; we have

(2.24) ey — @sll = sup " (2) — {7 ()]

In fact, according to the mean-value theorem and (2.19), we obtain the
existence of an # e (0, z) such that’

lpf"~? (2) — @ (2)] = 29} (Z) — [ (Z)!.
Hence and by (2.16) (because of ¢<<1) we get
sup |¢f°~ ) () — @{" ) (2)] < sup |¢{” (z) — @}” (@),
<0,¢) €0,¢)

which means, in virtue of (2.18), that (2.24) holds. Furthermore, it follows
from (2.19), (2.20), (2.21), (2.24) and from the Arzeld theorem that X,
c 0"[{0, ¢)] are compact. The convexity of the sets X, is obvious. Thus
X,%x...xX,, is a convex and compact subset of the Banach space

(C"[€0, &1, I )™
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Now we prove that T transforms the set X, x...x X, into itself.
Similarly as above we assert that

(2.25) |¢}”(m)|<ij, ze(0,¢),8=01,...,7—-1. -
Differentiating (2.23) o times we obtain (see Lemma 2) that

(2.26) T(9) (@) = b (@, {p; [fe (@)1}, ---5 {9)" Lfi(@)T}) -
According to Lemma 3, the definition of X; and (2.i), the functions k, are
continuous in the interval (0, ¢). Therefore T',(p) € C"[{0,¢)]. Putting
= 0 in (2.23) and (2.26) we get, in view of (2.ii), (2.19) and (2.11),
T;(p)(0) = 0 as well as T{’(¢)(0) = 0. Thus T, fulfil (2.19).

To obtain an estimate for T()(¢)(x), we make use of (2.26) and
Lemma 3:

T () (@) < |25 (2, o5 Lfel @}y - o Lhil@) D)+

gm=1 jm=1

oh.
i @ @A H@T e @]
ik

It follows from (2.i), (2.26), (2.16) and (2.14) that
PP [f @)1 < Bify(2) < Bo<a<d, 8=0,1,...,r—1,
So, by (2.15) and (2.20),
1T (9) ()] < B

which means that T,(p) fulfil (2.20).
To see that T(p) satisfy also (2.21), take an arbitrary system of
numbers ¢; > 0 satisfying the system of inequalities

122 (G +m)e; < &
%

Let |v—%| < 8, @, Z € (0, 6), where 8 = d(e,, ..., ¢e,) i8 just as in (2.17).

Then, on account of (2.26) and Lemma 3, we get

(2.27) 1T (o) (@) =T () (2)] < |Z% (2, (@ [fic(@)1}y -y (0P [f (@) —
"Z;(Er {?’1[fk(f?)]}’ seey {'p}"" [fk(i)]})|+

m n

+2

Q=1 (=1

oh
——- (@ {g; e @ D) 1 (@) T (¢2 [fi(@)1— oL [£:(E)])| +
Yt

m n

)

g=1 f=l

o0 Lf,(2)] (:y—'; (&, o@D @Y -

oh ,
— 3y & DA (w)]')
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By the mean value theorem, (2.13) and (2.16)
(2.28) 1fe(@)—fr@) < |Z—2l, @,Ze{0,c).
In virtue of (2.25), (2.18), (2.20) and (2.14)
@] fe@®] <8, &=0,1,...,7—1, z€(0,0).
Moreover, (2.21) and (2.28) imply
I (@)1 - 9 [ B < &
and (2.i), (2.25), (2.14) and (2.16) show that

lp; ()]l < d
PO (@< R, 8=0,1,..,r—1.

Thus we may use relations (2.17), (2.15) and (2.17), (2.20), (2.14) and
(2.17), in order to estimate the first, second and the last summand of
(2.27), respectively. Thus we have

1T (9) (@) =T (9) (8)] < &
and hence T,(p) fulfil (2.21).

It remains to show that the transformation 7T is continuous. Let
peX; X...xX,, pe X, x...xX,, and let lim¢p, = ¢, in the sense of
0

p P00 p 0
the convergence in the set X;. Since T; maps X, x...xX,, into X;, we

get T;(¢), T,-(zo) € X;. On account of (2.26) and Lemma 3 we infer
lTﬁ”p () (@) =T (¢) (@)
’ <lzfo, BU@y o @) ~
—Zi(o; i@ - (@ U@l +

(w {%[fk(w)]}) Lfi (@) Itr"’[f:(fv)] ¢"’[f:(fO)]l+

gml fml

+ 1gg O LA@]LS (@)T

oh.
ayo i, B @UA@D) ~ 5 (e, {g,[fmm)'].

From the uniform continuity of the functions Z} in D and 0h,/dy;, in D’
and from the fact that the sequences (gv“)), 8 =0,1,...,r, are uniformly

convergent in the interval (0, ¢) to the functions cp}" we infer that the

sequences (77" (¢p)) are uniformly convergent to (T") (qo)) in <0, ¢), which,

in virtue of (2. 24), means that ||T; ((p) —Ti(¢)[|—->0 whenever ||¢p,. @;ll—0.
0

Therefore the transformations T are contmuous in X, x. xX,,,.
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It follows from Schauder’s theorem that there exists at least one solu-
tion ¢ € C7,[{0, ¢)>] of the system of equations (1) satisfying conditions
(2.10). This solution can be extended to a solution defined on the whole
interval I in the same way as in [2], and this extension preserves the
class of regularity. The uniqueness of solutions follows from the theorem
contained in [6]. Thus the proof is complete.

For the functions f, € C"[I] and k, € C"[2] it follows from (2.1) that
for arbitrarily fixed number » > 0 there exists a set U,:= (0, ¢,> X
X{—dy, d,)™ in which the inequalities

(2.29) o (-’” {yjk})[fk(m)]r aijk"l'—

hold.
The following lemma is true:

LeMMA 5. If (2.1), (2.i) and (2. 1V) are fulfilled, then to an arbitrary
positive number d, there exist constants LY, > 0 such that for every (z, {y,},...

cos {5y (@, TR}y ooy U} €Z : = (U,NT,) x{—d, &)™ we have
(2.30)  |hi(z, {?/jok}f ceey {?l;k})—h:(‘v’ {g:k y ooy {?—/;k})l

m n r
<D D D Ly lye—val,

gm1li=] gm0
Where L:fk = aﬂk +ﬂ12.
The proof of this Jemma is quite similar-to that of Lemma 4.5 in [8],

p. 94. It is based on Lemma 3 and on the fact that the functions Z; occur-
ring in (2.4) can be written in the form

Zi(z, {yn)) = 2, {Y}),

Zi(zy Yy -0 Wied) = P, {y5i}, i) + _
+Ry(w, {?/;]k}a-"’ y;;l})’ 8§ =2,...,1,

where

*h
Pi(@, (4%}, Wh)) = a_m: (=, {y5h) +

n

P30 3 3 e o

a=1 vrdq=1Kp kg Jake

X yillkl M yjldkcf"ﬂl(m) "'f’ltq(w),

are polynomials of the variables (z, {y;;}) and Ri(z, {y}, ..., {¥jz'}) are
of the class C"~* with respect to # and of the class 0"~**! with respect to
Yj%- The above formulas can be obtained by induction.
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THEOREM 2. Let assumptions (2.i)—(2.iv) and condition (2.11) be ful-
filled. Then there exists exactly one solution ¢ € C,[I] of system (1) in the
interval I satisfying (2.10).

Proof. By Lemma 1 we have the existence of constants » > 0 and
R, > 0 such that

(2.31) D D (ag+nR <R
ik

Having chosen such an 7 > 0, we shall regard it as fixed in inequalities
(2.29). The continuity of A} in Q x R™, (2.11) and (2.31) guarantee the
existence of a number ¢; > 0 such that

(2.32) [B(@, {0}, ..., ONI < Bi— 3’ 3 (@ +m)EB, for 20,6,
J k

Let us choose a number ¢ > 0 such that

dy
(2.33) 0<c<mm{ol,cz,c,,1 mmR , min 77 }
DA
8=0
Let X; denote the space of all functions of class C7[{0, ¢)] satisfying
the conditions

(2.34) :(0) = ¢{”(0) = 0;

(2.35) ") (@)l < R; for all z e (0,0),

and let T; be the transformation defined on X, x... xX,, by the formula
(2.36) T.(p)(2) : = hy (o, {,[fi(@)]}), 240, 0).

We shall show that the spaces X, 'a.nd the transformations T'; satisfy
all the assumptions of the theorem contained in [12]. To this aim, we
introduce the metric

(2.37) elp, @) := sup g (z) — g (@) in X,.

Then, X, are complete metric spaces. In virtue of the mean-value theorem
and (2.33), for ¢; € X, we have

(2.38) |¢f" (@)l = Ip{ () — ¢ (0)| S By e <y, 8 =0,1,...,7—1,
wel0,¢).

Take an arbitrary ¢, € X,. On account of (2.36), (2.i), (2.34) and (2.ii)
we get

Ti(9)(0) = 0.
Differentiating (2.36) o times, we obtain as in Lemma 2

(2.39) TS"’ (p) (@) = h{ (a” {% (@)1} .0ry {?’Sc) [fk(w)]})! z € (0, 0).
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Putting z = 0 in this equality and making use of (2.i), (2.34) and (2.11)
we have

I (9)(0) = 0.
Thus T;(p) fulfil (2.34).
It follows from (2.39) that

TP (@) (@) < (B (2, {9 e (@)D} -y @ fi(@) D))

—hi(z, {0}, ..., {O})|+ IBi(x, {0}, ..., {O})I.
Since
sup [¢{" [f.(2)]] < sup g (z)], & =0,1,...,7r—1,

0,0

then by (2.38), (2.33), we may use inequalities (2.30) and (2.32). There-
fore

1T (@) (2)] < 2 2 | ZL,k 98" Lfi (@)1 +

8=0

+ (0 + 1) g Ui @] +Bi— D D (a+ ) By
i k

According to (2.i) and (2.38), we have

(2.40) sup Iq’(s)[fk(fv)ﬂ < sup |‘P§a)(m)| < ch’ 8=0,1,...,r-1,
9,¢) <0,¢>

which, in virtue (2.33), (2.i) and (2.35), implies the estimation
1T (@) (@) < B;, @ €0, 0).

Thus T,(p) satisfies (2.35).
For ¢;, p; € X; we have

Q(Ti(‘l’)r i(¢) 22(“:1k+77)9(9’j:¢1)-
i k .
In fact, since the transformations T; map X, x...xX,, onto X,, (2.37)
and (2.39) imply that
e(T(9), Ti(p))
= ?Jlglh:(wi {o; [fe(@)]}s -y {9’57) [fk(w)]}) -
— (2, {§[fi@)]}, s @ (@)D
Using (2.40) and (2.33) for ¢; € X; we obtain
l?’;a)[fk(-’”)]l dy, z€(0,c),8=0,1,...,r—1,
and by (2.i), (2.36) and (2.33)

P @] <d, x&0,0).

8 — Annales Polonici Mathematicl XXXVII, 1
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Therefore, we may use inequalities (2.30). Thus

(241)  o(Tilp), Tulp)) < 2 2 [2 Liye sup ¢f" [fe(2)] —#f" (@)1 +

<9,0)

+(ags+ ) sup B2 o] -9 (o]
Because of f,((0,¢)) = (0, ¢) (see (2.i)) and in virtue of (2.37) we have
(2.42) sup |¢f” [fe(@)1— 87 [fe(@)]] < o9y, 7).

€0,¢>

Similarly, using additionally (2.34) and the mean-value theorem, we
obtain
(2.43)  sup Ig; 1957 Lfie(@)] — 97 e ()] < sup 9 (@) — 7 (2)]

c

<g)ul)> gV (2) — ¢~ "(m)l\ce(%,%), 8=0,1,...,7—1.

According to (2.42), (2.43) and (2.33) we may go on with the estimation
(2.41)
_ i n
o(Ty(p), Tj('P)) < ZZ[Q(%; ¢j)? + (aijk+ _2‘) e(®;, %)]

= 22 (a.'jk+'l)9(9’11 ¢J)‘
1 &

It follows from (2.31), Lemma 1 and Remark 1 that the remaining
assumptions of the theorem contained in [12] are fulfilled. Thus there
exists a unique solution ¢ € C},[(0, ¢)] of the system of equations (1)
in the interval (0, o) satisfying conditions (2.10). The existence and
the uniqueness of solutions in the whole interval I can be obtained just
a8 in Theorem 1.

3. In this section we consider the problem of the continuous depend-
ence of (7 -solutions of system (1), satisfying conditions (2.10), on the
given functions. For this purpose we shall consider the sequence of the
systems of equations;

(3.1) (z) = :‘s (@, {g, [.’fb(“’)]}): zel.

As in Section 2, we assume that
(3.1) [ieO[I), O<fi(z)<z for x€(0,a);

(3.ii) h,e CT[Q], hy(0,{0}) = O;
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(3.iii) all the characteristic roots of the matrix [Y a;], where
kv

8h

(3.2) aﬁk =

:(0)T)

ajk

are less than one in absolute value;

(3.iv) the sequences of functions ( fk) and (h) are almost uniformly
convergent to the functioms f,, and h,, together with all their
derivatives up to the order r in I and £, respectively.

We define the functions k] similarly to the former definition of &g,
namely: ’
hg(wy {?/;'lk}) 1= hy(z, {y?k})y (=, {y;)k}) €,
’ " ohe
(3.3) ?:(ﬁy {?/;')k}y ceny {y;k}) = —’_ (@, {?/?k}i AP {?/;k—l}) +

n o—1 3ha_

+ZZZ o (@, W3ds -0 W3 DY i (@),

(@ {Uhs -y (7)) € @ XE™™.
The functions h{ are assumed to satisfy (cf. (2.11)) the conditions

(3.v) ki (0, {0}, ..., {0}) = o.

If f, eC[I] and h; € C"[Q2], then Lemma 3 implies that

(3.4) {bf (@, (Y} s i) = Zi(@, W)y - N+

mn 3h‘
+;g 295, (@, {yjk})yql[fg(w)],

and
hi e O [QXE™ ],  Z e OO [QXBMV).

Hence and by (3.3) we get
(3.5) 250, {0}, ..., {0}) = 0.

LemMA 6. If the fumctions f, € C"[I], h; € O"[Q] satisfy (3.iv), then
the sequences of the functions (ki) and (Z3) are almost uniformly convergent

to the functions h and Z2 in the sets Q X R™° and Q2 x R™™°~1, respectively.
0 0
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Proof. Induction.

THEOREM 3. If assumptions (3.1), (3.ii), (3.iii), (3.v) are fulfilled amd
if there exists a number &> 0 such that

(3.6) Ifi(@)| <1 for 240, &),

then for an arbitrary v system (3.1) has exactly one solution ¢ € C,,[I] in

the interval I satisfying conditions (2.10). If, moreover, (3.iv) is fulfilled,
then the sequences () and (¢'”) are almost uniformly convergent to ¢ and
0

v v
@', respectively, in the interval I.
0

Proof. For any fixed », the existence and the uniqueness of a solu-
tion ¢ € O, [I] satisfying (2.10) are ensured by Theorem 1. To prove

the second part of our theorem we use J. Matkowski’s lemma contained
in [9] (Lemma 2). Let

A. = ‘Xl Xeoo )(Xm,

where X; are defined just as in Theorem 1. From (3.iii) and Lemma 1
it follows that there exist an 7 > 0 and R; such that

D) M (ay+n)R;<By O0<R <l
i k 0

According to (3.iv) and Lemma 6, we infer that for arbitrarily fixed
numbers ¢,;, 0 < ¢; < a and d, > 0 there exists a positive integer ¢, such
that for v > ¢, v €(0,¢y), lypl<d;, s =0,1,..., r—1, the following
inequalities hold:

1Z5@s Wby - oo Wik DISIZL@, @heds oo Wi DI+ [ B — ZZ(G¢;k+W)R]

and
3h,

a5 @

On account of (3.5) and (3.2) there exist numbers ¢, and d, 0 < d < d,,
0 < ¢; <c,, such that for all v>¢q,, 2€(0,¢), lypl<d, s =0,1,...
.., 7—1 we have

\Zi (@5 Y3y - Wi DI< Bi— D) Y (e + )Ry,
’ 7] % [}

3h-

1

{yjk} [flc(-'”)]' o (z, {?I;k})[fk(w)]'

Nld

and
0h¢

ayjk

(», {?/jk}) [fk ()T < ijk +n.
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Put
c:=min{l, ¢, &, d},
D:= {(=, {yp}y .-, (452 1); 0< @<, [Yp! <Ry, 1=0,1,...,r—1},
D' := {(=, {yj:}); lyj! < Bj}.

Take arbitrary numbers ¢ > 0 fulfilling the system of inequalities
22 (G + 1) &5 < &.
i k 9
By Lemma 6 and in virtue of the uniform continuity of the functions
Z; in the set D, dh;/dy}, in the set D’ and f, in the interval (0, o), we
0 0 (]

got the existence of a 6 > 0 (depending on ¢;) and a positive integer ¢,

such that for all (z, {yji}, ..., (¥5c'))y ) @}y ooy TP €D, —F < &,
W~ < 8, 1 =0,1,...,7r—1 and »>g¢, or » =0 we have

\Z5(@y Wk} -oen (U5 ) —Z5(Es T}y -y T D
< |Zi(=, {?/})k}i o {3k 1})—2 @y @Yy oo T NI+
|Z'(Ev {yjk}v ) {y;k l}) _Zr(‘”’ {yjk}’ 9 {;'—/;I_c-l})l

%[8 -22( ik'l"?)ei]

and, similarly,

o, o
>y

el ayo (-’17, {yjk}) [fl (ﬁ)]' ayo (a;’ {yjk})[ft (.’L‘)]'

< %[%“22(?&4"7)5}]'
7 Kk

Having chosen such E;, ¢, ¢;, 6, we define the sets X; by conditions (2.19),
(2.20) and (2.21) and the transformations T on the set X, X... xX,, by
the formulas

(3.7) T(p)(z) := (T1(p) (%), ..., Tnlp) (@),
where
(3.8) Ti(p) (@) : = by (z, {@;[f(@)]}), @e€0,0).

We shall show that the set A and the transformations T for all

v > ¢ := max {q,, ¢} or » = 0 fulfil all the assumptions of J. Matkowski’s
lemma [9]. To this purpose we define the following metric in the set A:

o(p, @) := > sup o} (2)—g{" ().

7 <00
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It is easily seen that A is compact. For » > q or » = 0 we infer as in the

proof of Theorem 1 that T are continuous transformations mapping A

into A, which have exactly one fixed point tp in the set 4. Now we shall

show that the sequence (T) is uniformly convergent to T in the set A.
From the definition of the metric o and on aceount of (3.7), (3.8)

and (2.26) (replacing T by T\, b} by h; and f, by f,.) we get

(3.9)  o(T(e) T(p)< 2‘ sup (1 (2, {p fu(@)]}, .-, o [filo)]))
—K (o, fpy @D, -, @U@+

+ 3 sup (o, @LA@T, -y @ ula)D) -
—hi{e, @ylfe@D s @ Ul

Since = € (0, ¢), then by (2.25), (3.i) and (2.20) the sequences (k) tend
uniformly to h' in the set (0, ¢) x ( —1,1)™ "+, Therefore, for every

e > 0 there ex1sts a positive integer N, such that for all » > N, and
xz €0, c) the following inequalities hold:

(3110) lh; (3’1 {‘Pj [fe(@)1}, ..oy {4’5" [.fk(-’”)]}) -
—z‘?(‘”a {%[fk(a’)]}: - (" [fk(-’”)]})l

Moreover, from the facts that X; are compact and A] are uniformly con-
0

tinuous in (0, ¢) x (—1, 1)™*+1 it follows that there exists a positive
integer N, such that for every ¢ € A, v > N, and z € (0, ¢) we have

611)  [ilo, (U@, ey B L@ =
—H (o, L@, oy BV < 5
Inserting inequalities (3.10) and (3.11) into (3.9), we get
e(-’f(tr), ’-o”(t;v)) <e

for every » > max{N,, N,} and ¢ € 4.
Thus the sequence (T) tends uniformly to T in the set A. By J. Mat-

kowski’s lemma [9] the sequences (¢®), 8 = 0 1,...,r, tend uniformly
to ¢ in the interval (0, ¢). v
¢
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It remains to show that (¢'*), 8 = 0,1, ..., r, tend almost uniformly
to ¢®@ in the whole interval 1.
Let d be the supremum of all b < a such that the sequences (¢'¥),
8 =0,1,...,7, tend uniformly to ¢ in the interval (0, 5). For "the
indirect ‘proof suppose that d < a. 0Assumpi;ionas (3.i) and (3.iv) imply
that there exists a { > 0 such that
fk(<0, d+{)) = <0,d—05.

The functions tp(’) ¢ =0,1,...,r are uniformly continuous in {0, d—{);
the sequences (¢p$°)) and ( fk), § =0,1,...,r, tend uniformly to <p£” and
f,, in the mtervals <0, d— {> and <0, d+ {), respectively. Therefore for
an arbitrary e > 0 there exists a positive integer N, such that for every
v> Ny and ¢ €(0,d+ () we have

7L @]~ g T @)1 < 9l Lfu(o)— 9l @)1 +
+ I'P(s) [fk(w)]—fp [{k(w)]l Le

8 =0,1,...r, which means that (¢{”[f,]) tend uniformly to ¢{”[f.],
1] [}

8=0,1,...,7,in (0,d+{). Hence and from the fact that the func-
tions A{®, s =0,1,...,7, are uniformly continuous in <0, d+ {) X

x { =1, 1)™*+1) we infer that for any ¢ > 0 there exists a positive integer
N, such that for every »> N,, z€(0,d+¢(), 8 =0,1,...,7, we have

(3.12) |’f€ (=, {g’; L@} s {?}” ['fk(a’)]}) -

—hi (2, (g Lfe(@)B oy 04 ()] <

By Lemma 6 there is a positive integer N, such that for every » > Ny,
ze(0,d+¢(),8=0,1,...,7, we have

B (o) @A @D, - GOLE@D) Kl @y L@, s G LoD <5

These inequalities together with (3.12) and (2.2) (with ¢; replaced by
@iy h; by h; and f, by f,) imply that for every »> max{N,, N,, N4},

8=0,1,...,r,



88 Z. Kominek

sup |¢{? () —¢f? ()| < sup ([h3(e, {p;[fi(@)]}, ..., {of [fi(@)]}) -
0,d40> » 0 0,840 » y v v y
—"‘:(w: {“}”j [{k(w)]}’ ceey {3)5” [{k(w)]})l-f-
+ B} (z, {3” [jk(w)]}, ey {g?’ [{k(w)]}) —
—H(e, o@D -y [of,,(w)]})) <,

which proves that (¢?) tend uniformly to ¢® in <0, d+¢), contrary
14 0

to the definition of d. This contradiction finishes the proof of the uni-

form convergence of (¢') to ¢!, 8 =0, 1,...,r, in the whole interval I,
14 0

and thus also the proof of Theorem 3.

Remark 2. If we assumed condition (3.iii) for » = 0 only, we would
get the first part of our assertion for » sufficiently large. This can be
seen by Lemma 1 and from the fact that for an arbitrarily small positive
constant n the inequalities

Qg < %y +7
hold for » sufficiently large.

THEOREM 4. Let assumptions (3.i), (3.ii), (3.iii), (3.iv) (3.v) be ful-
filled. If, moreover,

(3.13) there exist a number L > 0 and a set U, : = {0, ¢,> X { —d,, d,)™"
in which the inequalities

T hy "k,
31"3;!/;}:... am” (w’ {yjk})— 3:!:’33[31 . aym” (m, {yﬂc})

< LZ Z 1Y 52— Ypee|
7 %

hold for 1= 0,1, ..., 7, 8;,=0,1,...,7—1, 8;;+...+8,,=r—1,
then for an arbitrary v system (3.1) has exacily one solution ¢ € Cp,[I] in I

satisfying conditions (2.10) and the sequences of the solutions (p) and their

derivatives (c,v“’)) tend almost uniformly to ¢ and ¢ in the interval I.
0 0

Proof. For a fixed », the existence and the uniqueness follows from
Theorem 2. It remains to show that (q)) and (e;o(")) are almost uniformly
convergent to ? and cp(") in I.

By (8.iii), (3.2) and Lemma 1 there exist numbers » > 0 and E; > 0
such that

(3.14) D D(ayw+n) R <R,.
i k0
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On account of (3.iv) and (3.2) there exists a positive integer N, and
a set U,:i= (0,¢) X {(—dy,d)™", 0 < 6, < @, dy > 0, such that for all
(#, {¥;.}) € U, and »> N, or » = 0 we have

3h

E
According to (3.13) and Lemma 5, the functions A fulfil the Lipschitz
condition with respect to yj with the constants Li,, s =0,1,...,7,

in the set Z:= (U,nU,)x {(—d, &>™", d>mq,xR,., and, by (3.15) and

(3.15) {i}) [fk @) < < By + Y

(3.iv), we may assume without loss of generality that the numbers Lj;,
8 =20,1,...,r, where L}, = a,;,-+n/2, are independent of the choice of
v 0

the number » > N,;. Thus

(316) Ki(w, {85}y --os 5D —Hi(e, by -oor T

2 Z 2 Ligwe Y5 — Yl

8=0

where Lj; = ,,,‘+q/2 v=2Nyory =0.

In virtue of (3.14), (3.iv) and (3.v) there exist a ¢; > 0 and a positive
integer N, such that for all € (0, ¢;) and » > N, or v = 0 the inequalities

(3.17) B(@, 0+ PN < Bim 3 Y (@i + 1) R
14 7 %
are fulfilled.
We define (as in the proof of Theorem 2) the number

ds n},

ci= mm{cl,c,,ca,l m.m—l—e-, min
i By gk g 2 L
where d; : = min{d,, d,, d}.
Let (X;, o) be the metric spaces of all functions of class C" in 0, ¢)

fulfilling conditions (2.34) and (2.35), the metric ¢ being defined by (2.37).
Let T; be the transformations defined for ¢ € X, x... x X,, by the formula

'Ti(‘P)(“’) = 7:«:(“’: {‘Pj[;fk(m)]})v »e0,c).

We shall show that the spaces X; and the transformations T,

v> N := max {N,, N,} or »=0, satisfy all the assumptions of the lemma
of K. Baron {1]. Making use of (3.16) instead of (2.30) and of (3.17) instead
of (2.32), just as in the proof of Theorem 2, we can show that for all» > N
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or » =0, the transformations T; are of the type X, x...xX, —X; and
that for all ¢, pe X, X...xX,,

o(Tule)y Ti@) < D) D) (au+n)elg;, #)-
v v 7 k 0

Putting
@y = 2 (‘:ijk+ 7)
%

and using (3.14), Lemma 1 and Remark 1, we infer that
¢, >0, 1=0,1,...,m—1, Ai=1,...,m—1.
On account of (2.37) and (2.39) we get
o(T:(e), ;—"f(sv)) = sup Iil’i"(sp)(w) —’—fﬁ"(sv) ()] = sup |l»: (2, (% (@)D -
o U @)D) = Bi (o, @y Lfu@), o @7 (@)D

By Lemma 6 the sequences (h’) tend almost uniformly to h' in the set
2 x R™". Hence and from the u.mform continuity of h' in the set {0, ¢) X
X [(~Ry, B X... x (—R,,, B,)]")" it {follows that g(T (@), T i(9))
tends to zero. By a lemma of K. Baron [1] the sequences (tp¢) a.re con-
vergent to 2 In our case this means that (¢f) tend unifor'mly to ?ge),

8=0,1,...,r, in the interval (0, 0¢). In the same manner as in the proof
of Theorem 3 we can show that (¢{”) tend almost uniformly to ¢,
14 0

8=0,1,...,r, in the whole interval I. Thus the proof of Theorem 4 is
finished.
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