ANNALES
POLONICI MATHEMATICI
XXXVIII (1880)
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Abstract. The measure generalized directed divergence is characterized with
the help of a functional equation, which is solved by means of distributional methods.

1. Let P = (Ply cery pn):Q = (41, sy Qn): R = ('rlr sy rn)) Dis 5 74
>0, >p, =D ¢ =) r; =1, be three discrete probability distributions.
tm=] i=1 i=1

Then the measure generalized directed divergence (see [1], [5]-[7]) is
given by

Diy ooy P n ,
(1) D,(PIIQIR) = Do | sy -+ 6 | = D) pilog =,
4 7;

7'1,...,1'” ‘l=l

where the logarithm base is 2.

In this paper we characterize (1) by a functional cquation involv-
ing distributions, using a method similar to given in [2]. For similar charac-
terizations of Shannon’s entropy, directed divergence and inaccuracy we
refer to [3] and [4].

PosSTULATES. Let I, (P||Q|R) be a systen of functions defined for » > 2
and satisfying the following axioms:

: b;
(i) K, (P||Q|R) is symmetric in (qi) (2 =1,...,n),
¥

(i) K, is continuous,

D1y ey Py PrtDPayPyy-ovy Dy
(iii) K, {q1yees @] =K, |1+ G5y ooy @ | T

iy ees ¥y Tt Tay Fyy coey ¥y
y 451 P:
P1+P2 Pt
a4 qa
+(p,+p) K
(P1+p) K, Q1+Qz’ o+ ’
71 Ts

Fotrs | PiHTy
whenever p, + Py, ¢, + sy ¥+ 7, > 0.
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THEOREM. If the functions K, satisfy conditions
(i)~(iii), then
n n n
(2) K, (P|IQIR) = a > p,logp;+b D plogg+e ) plogr;,
im1 im1 i=1
where a, b, ¢ are arbitrary constants.

Remark. As in [4], it can be shown that finding K, in (2) is equiv-
alent to solving the functional equation

T, Y, 2 r+y,0,2 z,9,0
(3) Llu,v,w| = L\u+v,0,w|+L|u,v,0
p,q,r P+4,0,7 ?,4¢,0

with L symmetric and positively homogeneous of order 1 with respect
to #, ¥, z and of order 0 with respect to %, v, w and p, ¢, r, where

x y 2
r+y+z’ zt+y+z ztytz
T,Y,% " v w
) Lju,o,w)=(@+y+2)k, utv4+w wtotw’ wutotw
P a7 , . ’

p+q+r’ prg+r’ prgtr

Further, instead of solving the functional equation (3) for three triples
(,y,2), (#,v,w),(p, q,r) of variables, we solve a more general one for
a system of » triples.

2. Let D be the domain in R** which consists of all points
Tyy Y1y %1
(®,9y,2) = ( .......... ) € R*™
Lns Yns 2n
such that ;,y,,2;,>2 0 (¢ =1,...,n) and at least two of the columns

(i) o) =L

have all elements positive.
Let D° be the interior of D, i.e., the set of points (z, ¥, 2) € R** for
which #;, y;,,2%,>0 (¢ =1,...,n).

Let
(-’1’11 Y1, zl)
K(x,y,2) =K|{..........
wn’ynrzn

be a distribution defined on an open set @ containing D.
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The distribution K is said to be symmetric on D°, if
() K(z,y,2) = K(y,2,2) = K(®,2,9)

for (z,y,2) e D’ Note that the remaining symmetry equalities follow
from (5).
The distribution K is said to be (1,0, ..., 0)-homogeneous on D°, if

My MYy, A2y Ty Y1y 2%
Kl.oiiiiiiininnnn. =,LK|..........
2oy AYny An?p Tny Yns %n

for ;4 ...y 4, > 0 and (=, y,2) € D°.
The symbols

%1y Y1, 0 Z,+Y1, 0,2,
K(z,y,0) =K|[......... and K@+9,0,2) =K|...ccoevvnnen

wn’ yrHO wn +yn709zn

will be meant in the sense of generalized operations on distributions (see
(8] and [3]).

THEOREM 2. If a distribution K(xz,y,z), defined in am open set O
containing D, is symmetric and (1,0, ..., 0)-homogeneous in D° and sat-
isfies, in D, the equation
(6) K(z,y,?2) = K(z+y,0,2) + K(z,y,0),
then it 18, in D°, of the form

n

(7) K(2,y,2) = ) o;[(@+y:+2)log (s, + y; +2) —

i=1
—a,logz; —y,logy; — 2z logz],
where a; are constants.
Proof. Let

F(zyy...,>,) =K(1—2,%,0) =K( .............

for #; €(0,1) (¢ =1,2,...,n).
By the symmetry of K, we get

(8) F(@yy .y @) = F(L—2y, ..., 1—a,).
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By the symmetry and (1,0,...,0)-homogeneity of K, we obtain
from (6)

o+ 0 2
Byy Y1y % B+yi+2 | B+
(9) K( .......... ) = (@1 FY1F2)E R cvveerieiiiiiiiiiiiiiiiiean -+
Zpy Ynr Zn Ty + Y, 0 %
TutYutzn’ | Tatynto

w4y’

A S $1+y1+z1,.”,wn+yn+zn

Y1 Yn
Ha+e) (“’1+3/1, ’wn'l'yn),

which, by symmetry, results in

un
(10)  Flay, ..., @)+ (1~ “"*’F(l -z’ ’1—:»,.)

x &
= F(u,, ---’u1;)+(1-u1)F(1_1u1 yreey l—n'll,n)

for z;, u; € (0, 1) with o, + 4, < 1.
We shall prove, by induction, that if F satisfy equation (10), then
foreveryk =1,...,n

k
(1) Flo1y-ees 8,) = D (—a;)[8,logs; + (1 —8,)log(1—s)] +

i=1
+A(8y1y ey 8,)8FB(8311y -1y 8y),

where a&; arc number constants and A(s.,,,...,s,), B(s..,,...,8,) are
some distributions of » —k variables (which, in the case k = n, also be-
come constants).

Before we prove (11), note that (10) and (11) imply the equality (cf.

[21)

& &
12 L] - kit ese d )
(12) A(Bryry ooy Tp) A(l—’“k+1’ 'T—u

= B( uk+1 . '_u'n .
1-— a:,,,“ l—w,,
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By partially differentiating (10), first with respect to z, and the
resultant with respect to «,, applying the substitution

Usg Ty
13 8 = i, =
(13) § ’ g 1—wuy

'

we obtain

&
31(1—81)"3?'1'1(311“-!311) = const (8;&(0,1)),
1

so that (cf. [2])
F(8yy...,8,) = —a,[8,logs,+- (1 —8,)log(1—8,)]+ A (82, ..., 8,) 8+
+B(85) ..y $5),

where @, is a constant and A(s,,...,s,), B(%s,...,8,) are distributions.

This means that (11) is true for ¥ = 1.
Now we assume that (11) holds for some %k, which implies (12). Dif-

ferentiating (12) with respect to w,,, and using (13) we obtain

0
— (1=t 7 Aty ooy ty) = (1_8k+1)E_B(8k+17 iy 8y)

k+1 &+1
for 4., ...yt 8k42y-++y 8, €(0,1). Hence
(14) A(tk+1’ "'7tn) = _ak+l[10gtk+l—log(1 —tk+l)]+A(tk+21 ey tn)
and
(15) B(841y -0y 80) = —ap10g(1 —500) + B(8y10y -+ 1y 80),

where A(?,.,...,%,) and B(s,,,, ..., $,) are some distributions and a,,,
i8 a constant.
Now, (14) and (15) together with (11) lead to
k41
F(81,...,8,) = D (—a)[s,logs;+ (1 —8)log(1—s;)1+
=1

+ A(Spiay-eer 8,) 81+ B840y - ey 8.)»

which, by induction, proves equation (11) for all k =1, ..., n.
In particular, for ¥ = » we have

(16) F(34,...,8,) = Z(—a';') [s,logs;+ (1 —s,)log(1 —s;)]+ As, + B,

{m]

where A and B are real constants.
By (12), we get B = A— A = 0. On the other hand, from (8) and
(16) it follows that A = 0. Thus

F(s,,...,8,) = 2(—a‘)[allogs,-+(1—s,)log(1—s,)].

(=]
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Hence, by (9), we obtain (7), which finishes the proof.

3. Proof of Theorem 1. For n= 3, we get the solution of the func-
tional equation (3), which together with (4) and (iii) gives the required
form K, of (2) (cf. [3], [4]).

Note that adopting additionally the postulate of normalization
(cf. [7]):

31 $ 3 5%
(iv) K,|3,3]| =0, K,|%,4] =% K.|}, 8] =0,
3% 5% 1%
we obtain, in (2), a =0,b =1 and ¢ = —1, i.e,,

K,(P| |QIR) = D,(P| |Q|R)

(the generalized directed divergence).

Remark 2. It is easy to deduce from Theorem 2 also the form of
Shannon’s entropy, directed divergence and inaccuracy (see [4], [3]).
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