ANNALES
POLONICI MATHEMATICI
XXVII (1973)

Global existence for non-linear partial differential
equations of the first order

by A. ApaMmUus-KuLczyckA (Krakow)

In this paper we shall deal with the Cauchy problem for the differ-
ential equation

" 6 =f(@, ¥, 2,2y), where ¥ = (4, ..., %),

Ry = (zul’ teey zy")

with the initial condition
(2) z(a, Y) = w(Y),

where f and w are sufficiently regular.

We consider the existence domain for the solution of (1), (2). We
give an estimation for the existence domain depending on the domains
of functions f, w and the existence domain for the solutions of certain
ordinary differential equations introduced by Pli§ [1]. Similar results
of Pli§ [1] were obtained in a neighbourhood of a characteristic, but
our theorem is global. In the proof we divide the domain into thin slices.
We prove that in each of such slices a suitable transformation has an
inverse.

Let a < b be fixed and let g: [a, b) xR — R be a C'-function such

n
that gz+ > g;.> 0.
i=1

Put
(3) G = {(x, Y)e[a, b) XR": g(w, ¥) < 0},

8 ={(z, Y)e[a, b) xR": g(z, ¥) = 0}.

We suppose that G is a connected (necessarily open) region and,
moreover, that @ n {(z, Y):2x = a} is also an open region.

For an arbitrary fixed number ee(0,b—a) we denote by g, the
function

[a,b—e) xE" (z, Y) — g(#, ¥)+ R,
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and by G, thg set
{(#, Y)e[a,b—e)xR":g,(x, ¥) < 0}.

We suppose that ¢ is such that G, n {(x, Y): # = a} is 2 non-empty,
open region; it is obvious that this condition is fulfilled for every ¢ smaller
than some positive number &,.

Denote by R(&), R,(£) the intersections of sets ¢ and @, with the
plane z = &, and by r(&), r.(&) the projections of R(¢), R,(£) on the space
(Y19 +++y Yn)- We shall denote by 0@ the boundary of the set G and by
o(z, Z) the distance of point x from the set Z:

P={=Y,2Q):(zr, Y)e@,z,Q arbitrary},

where Y = (¥1, ...y %s); @ = (@1 -y @n)-
We shall denote by

Y(z,V) = (yl(w? V) eoos Ynlo, V)); z(w, V);
Q(xz, V) =(Q1(m’ V) ooy @iz, V)) (V=101 .0y 0);
tylz, V) (,5j=1,...,n)

the solution of the following system of characteristic equations consisting
of the system

y; = _fq.i(m7 Y,2,Q),
(4) ¢ =f(@,Y,2,Q) — D tufy (2, Y,z2,Q),
k=1

g; :f'yi(w’ Y,2,Q) +taef.(» Y,2Q),
and the system

)ty = D fan@ Ty Dbty + D (fou o)+

k=1m=1 k=1
e (- )@t D) (Fapay () F e @) s +
k=1

F Loty +fuy () e )G fe () G+
Hfeel- )0 (6,5 =1,...,m)

with the initial conditions

6) Y¥(a,V)=V, =z(a,V)=w(V), gqla,V)=uw,V)

(G =1,...,m),
t,-,-(a,, V) = ’wyi,,f(V) (’l:,j = 1, ...,‘n).

(7) Let I(a, V) denote the interval on which exists Y (z, V) for Ver(a).
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Assumption. Suppose that the function f(x, Y, 2, Q) defined in P
is of class C* in P and satisfies the conditions

(8) \ft, \Dfl, ID*fl < M in P,

where Df denotes any derivative of first order and D?f denotes any
derivative of second order.

The function w(Y) defined in r(a) is of class C* in 7(a) and satisfies
the conditions ‘

(9) lw], |[Dw!], |D*w| < M in r(a).

Suppose that there exists a solution t;(x, V) of system (5) satisfying
the initial conditions (6) for Ver(a), defined in I(a, V).

Assume finally that at the points (#, ¥ (#)) at which g(z, ¥ (2)) =0
the following lnequahty is satlsﬁed

(10) gz(“" Y(w)) — ngi(my Y(w)) 'fqi(w7 Y (z), 2(z), Q(.’D)) >0
i=1

THEOREM. Under the above assumplions there exists a solution of the
problem (1), (2) of class C* and defined on the set G.

Proof. To begin with remark that in virtue of the uniqueness prop-
erty it is sufficent to demonstrate that the solution of problem (1), (2)
exists in the set @, for arbitrary & > 0. Let ¢ be a fixed positive number.

Consider the integrals Y (z, V), z2(x, V),Q(x, V) for Ver(a). By
assumption we have t;(z, V) defined in I(a, V). To prove the theorem,
it is enough, in view of [1], to show that:

I. The mapping: T(z, V) = (2, ¥ (x, V)) (or exphc1tly

T(%) 01000y 0,) = (a’v?ll(a"f D1y ooey Up)y ooy Yn(Ty D1y oeny vn)))

0y;
has an inverse mapping defined on @, and Det( ) #0 on @,.

Vs

I1. The integrals y,(x, V), where Ver(a) (: =1,...,n), cover the
whole domain @,. In view of inequality (10) and the Borel theorem there
are two constans 4 and B such that, if ¢(x;dr,(£) < B for every a < ¢
< b—e¢, then

n
(11) Go(€y M — D 8o, (&, (&5 1, 2(8), Q(8) > 4,
i=1
where ner,(§) (1 = 715005 Mn)-

We divide the interval [a, b] into subintervals: a = 2 < a' < ...
vo. < @™ = b, where §; = o —a'~! (i =1, ..., m) will be chosen suitably.
The planes ¢ = 2* (i = 1,..., m—1) divide the domain G(@,) into the
layers A4°(4%).
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Now we shall show that I and II are satisfied in A if 61 fulfils the
following properties:

(i) r.(x) = r(2°) for cvery ze[x0 2°+ d,],
(ii) if o(V, 0r.(a*) < B/2(Ver(a?), then the inequality

(& M) — D) 9 (&, Iy, T(E, V), 2(5, V), Q(5, V) > 4
i=1

i true for 2® < E< a0+ 6;, 2 <E< 20+ 8,5 v < My < Yy if v, < ¥, and
Y < M < v I v, > Yy, where gy, =y, (2°+ 6y, V);

(iii) there exists a constant L such that, if o(Y, dr,(2')) < L, then
e(V, 0r,(a°) < B[2, where Y = (Y1, ..., Yn) 7. (1), V = (v1, ..., 0,) e, (2)
and v, = ¥; + M (2°— ),

. (m(+1/2n) A B
(iv) 8 < mm( na ' 308 ,l/m),
where a, f, and C will be chosen later.

Ad I. By [2] this will be proved if we show that the inequality
dy;(z, V)  0yi(a* V)
ov; 0v;

holds true in A4..

(12)

1
— b, =1,...
< " (ty ] youey M)

oyi(z, V)
0v;

)

From [1] the functions u; = uy(x) =

(t=1,...,m)
fulfil the system of equations

13) ;= Y[ fuq (%)~ Fou(D)g (@, V)~
k=1

yfq;qm(7 )i (2, T')]uk (t =1,...,n),

=1

where Z = (m) Y(z, V), 2(x, V), Q(x, V)).

oy; (% V
It- is evident that 9@ V) = 0y. We shall write
Y
’ oy (z, V)
(14) i e
Let us suppose that there exists such a positive constant K that
(15) <K, ltal<K inG(i,k=1,...,n). |

Then by (13), (14) and the thecorem on differential inequalities we have
legi ()] < i

where « = a(M, K,n) = M+ MK +nMEK,
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In(1+1/2n)

For |r—a° = - inequality (12) is satisfied. From the

na
definition of §, it follows that in the layer 4} the mappmg T has an mverso

and Det(g‘/’) # 0.

Yy

Ad II. Now we shall show that the integrals y;(z, V), where Ver, (2°),
cover the set Al. Let Y*(z*, Y*) by any given point of the set 4!, and
let V*(2°, V*) be the projection of Y* on the plane = = ““, and Y*
= (Y- ¥n); V¥ =(v],...,v);). In view of property (i) V* er(w") We
shall prove that there exists a point Ver,(z°) such that (2% V) = y;.
This will be a fixed point of a mapping 7. Let T = T,-T,, where

Ty: r(@®)> V= (v, ..., 0p) > Y = (yl(w*: Vi), ooy Ynla® Vi))"'s(w*)y
Ty 1, (%) Y VA = (0} +0f —y, (2%, VY, ooy 0L+ 0n — 4 (0%, VH)) e (20)
and

dy;(z, V)
0 p¥ LA S I0 — .
(16) v; = U; + F) . (x°—x)

\’Ve shall show that the mapping T satisfies two properties:

(T(V)’ ) Yo(V, W),
z° Tis defmed on set r,(x9).

. . n o
Ad 1°: Let 7 = T(V), W = T(W). We define o(V, W) = 2 lio; — .

Now we estimate o(V, W). By the definition of the mappmg T
we have:

'(51—1;1,...,'7),,—1;“)
=(0f—?h(w*ﬂ>uv--a%),---,v:—?/n(fv*, ”1’-”,”,1))7‘
(0 —wyy vy W, —wy,)
=('U1_ﬁ'/1(-'17* Way eory Wy)y oeny Uy — Y, (%, ’wl"'"’ww))'

Taking the coordinates of points ¥, W and using the mecan Values
theorem, we obtain from (12):

(17) Q(Va W)<%0(V, w),

which shows that property 1° is fulfilled.
Ad 2°: We consider the following diffcrence:

(18)  g.(a® Vo) —g.(2* Y')

= (2 — )9 (&, ) — D) 90, (&, M (E V(E, V"), 28, V), Q(E, V)],
i=1
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where 00 < £ < % 2° < & < %, 02 < n, < YL = yp(a*, V). If e(X*, ar.(z*))
< L, then from (iii) ¢(V°, dr,(2°)) < B/2 and from (ii) we have:

(19)  go(& M) — D) 9o, (&, MFg (€, X (€, V), 2(5, V), Q(5, V°)) > 4.

=1

From (18), (19) we obtain:
(20) g.(a% V°) < g, (a% T') — A (2*—2").

Next we estimate o(X", Y').
Write y;(x) = v —fo, (2% V¥, 2(2% V*), Q2% V7)) (¢ —2°) (i =1, ...,n),
where o are given by formula (16), and notice that '

(21) Y:(2°) = y;(a® V) = o],
Taking the coordinates of the points ¥*, Y' and using (21), we have:
(22) lyi —yil = |o} —f, (% V¥, 2(a% V*), Q2% V")) (a* —a°) —y; (2%, V°)|
=| f{.[v}’— fus (@0 Y (2% V*),2(2%, V*), Q(a®, V¥)) (m—a)] —
" lyitor, 7T}
< I |fo; @y ¥ (, V;'), 2(z, V°), Q(z, V) —

—far (2% X (@ V*), 2(2®, V*), Q(2°, V*))|ds.
Write

N = max (max
i,J G,

0y; (=, V)
ov; |’

dz(z, V) ", dq;(z, V) l)’
ov; | 0v;
J = max (max |g;(z, V)|);
then n
(23)  fole, Y(z, V%), 2(z, V°), Q(x, V*))—

'—'fqi (moi Y(mor V)7 z(woa V); Q(‘TD, V))
<(2MNn+MN) 3" 108 — v} |+ (M +M*+2M*n+ 2M*Nn) |z —a'l.
i=1
But from (16)

n
(24) 2 v} — o] | < Mn |z — 0.

i=1
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By (22), (23), (24) we have:

(25) , o(Y", YY) < Bnlo* — 2,
MM 42 2
where § — Mn(2MNn+MN)+ —+— T””M Nn.
Let

(26) ¢ = max (max|g, (2, Y)|).

i g
From (26) and (25) it follows that
(27) lg. (@*, X*)—g, (2%, Y')| < Cpn o™ — o

In view of (20), (27), (3) and (iv) we have:
(28)  g.(a% V°) < g.(a*, ¥)—A (2" —2") < Opnja”* — 2" — A Je* —2°| < 0.

This shows that the point V°® belongs to r,(z°). Now we will estimate
the distance of point V° from o7, («°). Let o(V°, V) = min0 e(V°, V); then

" V edrez
(29) 19.(2 V) < € D) o} —7,l.
i=1
By (29), (20), (26) and (28) we have:
. _ Alz* -2 —g,(a*, YY)
(30) Z o) — ;] > m L ARSN

From (17) we obtain:

(-

= 1
DoV, ¥ = YoV, VY = eV, V).

i=1 =1

We notice that

(31) o(V% VY = o(X*, YY).
For T to be defined on 7,(2°) it is enough to show
(32) 29(V1’ V' < Q(Vo’ 7)

In virtue of (iii) the inequality
2Cpn|z* — 2> < A |z* —2°| —Cpn |z* — 2°* — g, (2, X)
holds true. :
Hence and from (31), (25), (27) and (30) we obtain inequality (32).

Now we must consider the case where ¢ (Y*, dr,(z")) > L. Then we have
either

(a) e(V', V) < BJ2

3 — Annales Polonici Mathematicl XXVII
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or ,
(b) o(V° V)= B/2 and V° is inside r,(x°).

It is enough to consider case (b).

By (25) and (iv) we obtain inequality (32), i.e. we infer that the
points VY, V2 ... are inside 7,(z°). In this way we have proved that the
mapping T is defined on r,(2%) if &, satisfies properties (i), (ii), (iii),
(iv). From the fixed-point theorem there is a point Ver (x°) such that
the integral y,(x, V) passes through the point (z*, ¥Y*). Hence from [1]
the solution z(z, Y) of problem (1), (2) of class C* exists in the layer A4,.
This solution exists on a neighbourhood of the layer 4,. It is defined for
£l = 204 4,. ' '

Write
(33) 2(a'y Y) = wy(Y).

Now we can consider the solution of cquation (1) with condition (33)
on the layer 4%. After a finite number of steps we obtain the solution
of class C* on G,, which was to be proved.

The author wishes to express his sincere thanks to Professor A. Pli
for suggesting problems considered in this paper and for his valuable advice.
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