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Capacities associated to the Siciak extremal function

by S. Kotobzies (Cracow)

Abstract. Certain property of the Siciak extremal [unction is proved which implies that two
logarithmic capacities associated to this function are Choquet capacities.

1. Introduction. The purpose of this paper is to give a proof of a theorem
concerning the nature of the Siciak extremal function which allows us to
show that two capacities associated to this function are Choquet capacities.

Let L be the family of plurisubharmonic functions on C” which satisfy

u(z) <log™|zl+0(1). zeC".

Denote by H the subclass of exp L which consists of non-zero homogeneous
plurisubharmonic functions, i.e.,

u(/z) = |4u(z), zeC", 1reC,

for every ueH. Let E be a bounded subset of C". Following Siciak [9], we
may define two extremal functions in C" setting

P (z) =supiu(z): ueexpL, u<1 on E!,
Ye(z) =sup u(z): ueH, u<1 on E|.

(In a different way the extremal functions were defined earlier in [6], [7].)
They are related by the formula

qlle(l,:)=¢E(Z), ZEC".,

where ¥, ,((t, 2), (1, z) eC x C", is the homogeneous extremal function of the
set \1! xE < CxC" If E is L-regular, i.e. @, is continuous, then also ¥, is
continuous in C xC". Given a function f: Q =»[—x, +oc],

f*(z) = limsup £ (0)

denotes its upper semicontinuous regularization.
The main result of the paper is the following theorem:
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THEOREM 1.1. Given E a compact subset of C", we have
limsup ¥, (t. Q) = limsup ¥,.£(0,Q), zeC".
t.0) ~(0,2) {=z

Several capacities in C" have been defined by means of the extremal
functions (see e.g. [4], [8], [9], [11]). It is an easy consequence of Theorem
1.1 that two of them

c(E):=(max Y}£(0,2)7", ¢(E):=exp(— | log¥}.£(0, z)do)

== 1 =1

(where o denotes the normalized Lebesgue measure on the unit sphere) are
Choquet capacities, i.e., they satisfy

(1 ¢(Ey<c¢(F) if EcCF,
(2) c(K))|c(K) if K;|K as j =,
3 c(E;)Tc(E) if E;TE as j > x

for K, K; compact and E, F, E; arbitrary subsets of C". In the case of
complex plane the definittons above yield the classical logarithmic capacity.
Theorem 1.1 also implies that, given E, a compact subset of C", the

extremal function log @F has the directional limit

limlog(®f(4z)/|4]), where zeC", 2€C,

|A] =~
in every complex line through the origin which lies outside some pluripolar
cone.

2. Preliminaries. To prove our theorem we need some results of the
Monge-Ampére operator theory developed recently by Bedford and Taylor
[1], [2]. Let ©Q be an open subset of C" and u a locally bounded plurisub-
harmonic function on Q. Then

(2.1 (dd°u)f =ddu n ... Ndd°u  (k factors), k < n,

is a positive current on © with measure coefficients, where d¢ = i(¢— 0).

CONVERGENCE THEOREM ([2]). Ler ) < PSH(Q) ~ L%.(Q) be a sequence

“lag
converging almost everywhere on Q to a function u' € PSH(Q) N L*.(Q) for
0<i<k<n If all but one of the sequences \uj\. ..., Wk} are monotone,

loc
either decreasing or increasing, then

Hmdd uj A... Addub =ddu' Ao Addou,

j—ox
HmouPddu} ~...Addu =uCddu' ~ ..o~ dd b,
j—=x
Hmdu} Anduj ndduj ~..o Add vk =du® Adou Addut AL dduk

j—o'x

(in the sense of currents).
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CoroLtary 2.1. Ler ju;} < PSH(Q)~L%.(Q) be a sequence converging

loc

almost everywhere to uePSH(Q) N L. (2) and et \v;; < PSH(Q) N LY (Q)

loc
converge locally uniformly to v e PSH(Q) n LY (Q). If supp(dd‘v)" <« K = = Q
for every j, then

fu;(ddv)" — {u(dd vy,

e} Q

(From every subsequence of {v;| one may pick out its subsequence (r;| so
that v; +1/k decreases to v in a neighbourhood of K and apply the
Convergence Theorem.)

The extremal function uy = log ®¥ of a compact non-pluripolar set E
has the following properties:

(2.2) (ddug)"=0 on C"\E (see [2]),
(2.3) | (dd“ug)" = c, (c, independent of E) (see [10]),
C"
(2.4) [ ug(ddug)" =0 (see [2]),
c"

(2.5)  up = max |0, uy—logR!
if F is the closure of zeC": ug(z) <logR] (see [3]).
For later reference we give also
ProrosiTioN 2.2 ([3]). Let ueLnC™ and @oeCg. Put
u=max |0, u—r).
If the set Q = u <r) is bounded and has a smooth boundary, then

| @du n(dduy™" = [ (dduy".

[19] 2
Finally, we recall a result of Levenberg [4] (see also [12]).
THeoreM 2.3. Let E be a Borel subset of a compact K < C". Write
p=(ddug)". If
ug =0 a.e with respect to p,

then

ug = uf.

3. Convergence of subharmonic functions. We begin with an auxiliary
the proposition.

ProrosiTioN 3.1. Ler D be an open disc centered at zero in the complex
plane and G a circled, compact subset of C". If u: D xG — R is a bounded
Sfunction satisfying the following conditions:
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(1) u(e'r, 'z) = u(z, z),
(it) u(-, z) is subharmonic in D for each z€G,
(iil) u(t, ) is upper semicontinuous in G for each t€D\ {0},

then u(0, -) is upper semicontinuous and there exists a sequence of real numbers
¢; decreasing to zero such that

lim u(e;, z) = imu(r, 2) = u(0, 2)

j—x t—0
for almost every ze€G with respect to the Lebesque measure in C".
Proof. Write

h(z) = u(0, z).
Since u(-, z) 1s subharmonic, we have

limu(z, z) = inf (max u(z, 2)) = h(z).

t—0 >0 |Jr|=¢

By (i), h(z) = h(e''z) and then the maximum principle for subharmonic
functions gives

(3.1 sup lu(r, e'z)—h(z)} J]O (as r|0) for all z€G.

This along with the third property of u proves that h is upper semicon-
tinuous. Indeed, if |z;} is any sequence of points of G converging to z, then

(3.2 maxu(t, z) = lTrE(maxu(t, 7)) = lim h(z)).

{tl=¢ j—x |t|=¢ ji~x

Fix a sequence gq;! of positive real numbers with

j=1
By Luzin theorem, for every j one can find an open subset E; of G such that
(3.3) ME) < g

(where A denotes the normalized by 1 Lebesgue measure on G) and h
restricted to K; = G\E; is continuous. Since G is a circled and h(e" z) = h(z),
we may assume K; to be circled. Let r be the radius of D. Put

h,(z) =maxu(t,z) for O0<e<r.

lzl=¢

Every h, 1s then upper semicontinuous (see (3.2)) and h, | h as ¢ | 0. It follows
from Dini’s theorem that for every j there exists ¢; > 0 such that

(3.4) h;(2)— h(z) <q} onK;.
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Put
(3.5)
We claim that A(F))

F;=1zeK;: u(e;, 2)—h(z) < —g¢;}.

< g;. Suppose A(F;) > q;. Then by (3.4)
ule;, z)—h(z) < qf for zeKj,

whence

(3.6)  [(ue;2)—h(2)di= [+

Kj Fj Kj\Fj

< =g A(F)+q; A(K;\F)) < —q (1= A(K;\F)).
Since K; is circled, we have

(3.7 [ (ulej, 22—h(2))dr = [(u(e;, e “2)—h(e™"2))di, te[0, 2n).
K.

J

-
-~

Combining (3.6) and (3.7), we get

2n
0< | ((1/2m) [ (ule;e, z)—h(z))dt)di(z) < —q}(1—A(K;\F)) <0,
Kj 0

which is an absurd. Thus we have proved that
(3.8) MF)<gq; (j=1).
Now, take

zeG\ |J (E; UF)).

jzk
Then by (3.5) we have u(gj, z) > h(z)—gq; for j > k. Hence

lim u(e;, 2) = h(z).

iz

Since the inequality

limu(e;, z) < h(z) for zeG

jox
is assured by assumption (i), we get

limu(g;, z) = h(z) for all zeG\S,

j—
where
S=0NU (E;UF)).

k21 j2k

It remains to observe that by (3.3) and (3.8) we have
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MU (E;UF)<2Y q;, -0 as k=,
=k

i =k

Thus the proposition follows.

4. Main lemma. The crucial step in the proof of Theorem 1.1 1s the
following lemma.

Lemma 4.1. Let A and B be non-pluripolar compact subsets of C" such
that A B and B is L-reqular. We claim that the operator

J(4, A, B) = | log Y¥«(4, 2)[dd log™ ¥, .5(4, 2)]",
cn
where 0 < A <1 and zeC", has the following properties;

(@) im J(4, 4, B;)) =0 when B;| A,

j—oax
(b) J(4, A, B)< J(1, A, B) for 0 < i<,
(c) imJ(4, A, By=J(0, A4, B).

A—0

Proof. We begin with a proof of (b). For fixed t <1 put
M(Z) = log+ qlrx/l(t, TZ), l‘(Z) = log+ l[llxﬂ(rs T,'Z).

u and v are the extremal functions of (@, <t~'! and (&g <17'!, re-
spectively.
Let v, ] v (¢]0) be the standard smooth plurisubharmonic approxima-
tion of v. By Sard’s theorem the boundary of the set
e 4 N
Q,(R):= v, <R)

is smooth for almost every ReR, where ¢; | 0 is some (fixed) sequence (we
drop indices j in what follows). Choose R > 0 with the property above and
put

i:=texp(—R), {,:=max(R,v), U:=max(R,?v).

Since T is the extremal function of Q(R) = (v <R}, by (2.2) we have

supp(dd‘ v)" < ¢Q(R).

Take @ e CT(C" with ¢ =1 on Q(R). The Convergence Theorem gives

41) | w-RWddDy = [ olu—R)(dd ) = lim | ¢(u—R)(dd5,)"
R) cn [adY] ch
=lim | @@—R)(ddF)"+lim | ¢@@u—R)ddT)".

t~0 5| £=0 cMo(Ry
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Observe that v, = v > R on C"\Q{R), so 0, = v, on this set. Take y e CT(C"
such that y = 1 on (supp)\Q(R) and y = 0 on {v = 0] > supp(dd‘v)". Now
from the Convergence Theorem we conclude that the second term of (4.1)
vanishes since

(42) ‘. (7 (u - R) (ddc 68)" = f X(P(u _ R) (ddc vc)n
(aa¥773) cn
- [ xou—R)(ddv)"=0, ¢}0.
ch

The similar argument leads to

@3) lim [ @@u-Rdd?)"=1lim | @u-R)ddr) =0.

¢ ~0 %) \o(R) £ =0 RN AR
Combining (4.1) with (4.2) and (4.3), we get

(4.4) [ (u—R)ddD)" =1lim [ (u—R)(dd)".
ARy t—0 m

Apply Proposition 2.2 to the right-hand side of (4.4) to obtain

@s3) | W-RETy = | (w—u)(dd Ty
%(R) %(R)
= | (u—v)dv, A(ddv)"'.
202,(R)

By repeated use of Stokes theorem we derive from (4.4) and (4.5) that

(4.6) [ u—R)(dd'D)"=lim [ (u—v)dv, A(ddv)" !
R &0 20,(R)

=lim( [ (u—v)ddv)"+ [ du—v,) Adv, A(ddv)" ")
£=0 0(R) Q:(R)

=lm( | (u—v)@ddv)y'+ [ dv, And(u—v) A (ddv)")
£~0 Q(R) Q(R)

=lm( | (w—v)(@ddv)"+ | v, d@W—v) A(ddv) '—
e—~0 Q(R) 32(R)

— | v dd(u—v) A (ddv)" ")
2,(R)
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=lim[ | u(ddv)"+R( | ddu n{ddv)" '— | (ddv)")—
£-0 (R) 2(R) Q(R)
— | vddu n(ddv) ']
2(R)
< [ u(ddv).
o
To justify the last inequality note that the second term in square brackets
tends to non-positive constant, because by [10] we have
[ (ddv) = [ (dd'v)"=c,>lim | ddu A (ddv)"".
2,(R) QAR) £~0 ¢n
Besides
[ u(dd v)" = | u(ddv)"
Q(R) P
as it was shown in the proof of Lemma 3.4 [3]. Finally, by (2.1),
[v,dd'u A @dv)" " 20.
c’l
Observe that (4.6) holds true for every R > 0. Indeed, if 0Q(R) is not smooth,
then one can apply the Convergence Theorem to the left-hand side of (4.6)
with R replaced by some R’ arbitrary close to R and such that 6Q(R’) is

smooth.
Now, by (2.2), (2.5) and the homogeneity of ¥, we have

[ (u=R)(dd'D)" = [ (log P} .a(t, 12)—log ¥;.p(T, 12)) X
TXR) cn

x (dd* max (log ¥, .p(1, 12), log(t/2)))"
= [ (log thkxA(li z)—log '{’le(la Z))(ddc lOg+ .Ple()‘, AZ))".

cn

Hence after the change of variables z —z/4 one obtains

@.7) [ (u—R)(dd* D" =J (4, A, B).

AR
Similarly, the transformation z —z/t leads to
(4.8) [u(ddvy = {log* ¥}.4(r, 12)(dd log™ ¥,.p(1, 12))"
cn cn
=J(t, A, B).
The second part of our lemma follows from (4.6), (4.7) and (4.8).

Now we turn to the proof of (c). Setting log ¥¥..(4, z) for u(4, z) in
Proposition 3.1, one can find a sequence ¢; | 0 such that

log Y. 4(0, z) = lim log YT, 4 (¢;, 2)

j=®
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almost everywhere in {|z] < M!\}|z| <], where § and M are so chosen that
z) <8 cizeC™. ¥§,,0,2)< 1! < ilz| <M.

Since ¥,.p is continuous and homogeneous, log ¥,,.z(4, z) tends to
log¥,.5(0, z) uniformly in C"\}|z| <é! as A —0. Thus we may apply
Corollary 2.1 to obtain

lim J(g;, A, B) =J(0, 4, B).

j—ox
This equality combined with (2) gives (3).

It remains to show the first part of the lemma. By (2.2), (24) and the
Convergence Theorem we have

limJ(1, 4, Bj =0,

j—x
but from (2) and (3) it follows that
J(A, A, B)<J(1,A,B) for 0<i<I1
and every j. So

limJ(4, A, B)=0 where 0<4i<1.

jmx

This completes the proof of Lemma 3.1.

5. Proof of Theorem 1.1. For E a compact subset of C", let E, be a
decreasing to E sequence of compact L-regular sets. It is well known (see [9])
that

(5.1) v(z):= lim log ¥y, (0, z2) = suplog ¥,.g, (0, 2)

k—x k=21
= ]Og l‘Vl><15(07 Z)-

Setting u(z) := log ¥Y¥.£(0, z), we may rewrite the conclusion of Theorem 1.1
as

(5.2 u=r*.
It is clear that u > v*.
When E is pluripolar,

sup Pg, (z) > +o0  as k 2o
|z|=1

(see [8]) and, by the result of Taylor [10],
limsup (®g, (2)/I2]) = A(sup P, ()"

lz| » lz[=1

for some A >0 and every k. It means that
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sup ¥y, (0, z) = limsup l;F’l,‘,;-k(l/lzl, z/|z|)

lz[=1 Jz| -+

ZA(SUP '}’lek(]’Z)”n’ k>1’

lzl=1

so

sup 'I‘I,Ek(O, z)—=+oc as k- oo,

|lz]=1
and by [8], +oc =v* <u= +oc. This proves the theorem for pluripolar
sets.

Now assume E not to be pluripolar. By the first part of Lemma 4.1 and
the Convergence Theorem we have

(5.3) ‘ u(ddt*y =0,
C'l
where i = max (0, u) and ©* = max (0, v*). Because of identities

(5.4) v(22) = v(2)+log 4| for zeC" and 1€eC,

u(Az) = u(z)+log|4|

7 and U* are the extremal functions of F, = {u <0} and F, = \v* <0},
respectively. Moreover, the set of points where v* discontinuous 1is
pluripolar by (5.1) and the theorem of Bedford and Taylor [2] which states
that negligible sets are pluripolar. Hence 7* is also the upper semicontinuous
regularization of the extremal function of the set K = {v* <0} (see [9]).
Now F, < K by (54) and we may apply Theorem 2.2 to derive (5.2) from
(5.3). Thus Theorem 1.1 follows.

6. Capacities. One may define two capacities, ¢ and ¢, corresponding to
the extremal function ug = log @, then former introduced by Siciak [8] and
Zaharjuta [11], latter studied by Levenberg [5]. Both are extensions of the
notion of the logarithmic capacity to the multi-dimensional case. For E a
compact subset of C" put

7(E) = lim (ug(z)—log|z|) = max (log ¥%,£(0, 2)),

|z} = jzl=1
7(E)= lim { (ug(Rz)—logR)do = | log¥¥.£(0,z)do
R |z|= 1 l21= 1

(where ¢ is the unitary invariant normalized surface measure on the sphere
flz2l = 1}) and define

c(E) = exp(—7(E)),  Z(E) = exp(—7¥(E)).
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Note that by Theorem 1.1 ¥, (0, z) = ¥Y¥.£(0, z) for every z e C"\ A, where
A 1s a pluripolar cone. The definitions above may thus be stated as follows:

(6.1) c(E)=(sup ¥1.£(0,2))"", C(E)=exp(— [ log¥,.£(0, z)do).
Izl=1 I=l=1
Now it is easy to see that

CoroLLARY 6.1. ¢ and ¢ are Choquet capacities.

Proof. The statement is a direct consequence of (6.1) and properties of
the homogeneous extremal function proved in [9].

From the Theorem 1.1 follows also

CoroLLARY 6.2. For E a compact subset of C" and for every z from the
unit sphere which lie outside some pluripolar cone, there exists the directional
limit of uf

lim (uf (42)—loglil) = log ¥y, (0, 2), i€C,

4]~ =
in the complex line through z and the origin.
Proof. If we denote

A = :.’.’1 '{’1,15(0, Z) # WT,(E(O, 2):,

then A is a pluripolar cone by Theorem 1.1. For z¢ A we have
ug (42)—log 4] = log ¥, p(1/14], 2),

and, since ¥,., i1s lower semicontinuous,

¥ (0, 2) S im ¥, .5 (f, 2) < im ¥, (¢, 2)

1 =0 t—~0
< lim W%, (t, 2) < YE£(0, 2) = ¥, £ (0, 2),
t—0

which was to be proved.
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