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1. The purpose of the present paper is to discuss the conditions
ensuring the convergence of the sequence of approximate solutions {y,}
to a solution of an abstract equation #= f(x). The most simple approximate
solutions of this equation are the simple iterations z,4+1 = f(zs), n = 0, 1,...
Because of rounding error or error in the evaluation of f(z) an approximate
sequence is in general produced in place of the exact sequence {z,}. It
is very important for numerical analysis to know the effect of this error.

This problem has been investigated in recent years by several authors
(for more detailed discussion and bibliography see [3]).

The present paper is related to the general idea of Wazewski [4].
The results stated here are an extension of the paper [1].

2. Preliminaries and lemmas. Following Wazewski [4] we
introduce

AssumprioN H,.

1° @G is a partially ordered set (an ordering relation is denoted by <,
we write u < v iff w << v or = v), in G there exists an element 0 such that
0<u for any u e G; _

2° for any u,v e G a relation u+v is defined and has the following
properties:

(a) if u,v,we@, then u+ve@G, ut+v=v+u, (W4+0)+w=ut
+(v+w), u+0 = u,

(b) if u,v,we@ and u < v, then u+w < v+w,

() if w,v,we@ and u+4v < w, then u < w;

3° for any non-increasing sequence {Un}, Un € G, Uy < U, n = 0,1, ...,
there exists a unique element u € G called the limit of the sequence {uy} (we
write u = lim 4y, 07 Up \u).

n—>00

The limit has the following properties:

(a) limu, is invariant with respect to the change of a finite number of
n—>o0

elements of the sequence {u,},
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(b) tf up=1u, n=20,1, ..., then limu, = u,
n—o00

(€) tf unNU, Va NV and u, < vs, ther u <o,
(A) of un \u, V520, then Un-} Vn Nu-+ 0.

AssumeTioN H,. The function a(u) is defined for wue AC G and has
the following properties:

1°0ed and of ke A, then ued for any w < k;

2° a(4) C G (a(A4) is the set of the values of the function a(u) for u € A);

3° if u,ved and u < v, then a(u) < a(v);

4° if uped, n=20,1, .., and U, \u, then a(u,) \a(u);

=0

5° u = 0 48 the only solution in A of the equation u = a(u).

DEFINITION. For any # ¢ A we define the sequence {a,(u)} of the
iterations of the element # by the recurrent formula

a(%) = U, Gni1(¥) = afan(u)), if an(u)ed, n=1,2, ..

We state the following

LEMMA 1 (see [4]). If Assumption H, is fulfilled and there exists
a ¢ed such that a(c) <c, then all iterations an(c), n= 0,1, .., of the
element ¢ exist and

Ani(C) S aple)<e, n=20,1,.., and a(c) 0.
LEMMA 2 (see [4]). If Assumption H, is fulfilled and there exist q € A

and be A such that

gt+ad) <b,
then the equation

(1) u=a(u)+q
has the solution w = m(b, q) < b, which has the following properties:
1° m(b, q) = limb,(b, q), where by(b, q) = b, b.11(b, q) = ¢+ a(bn(ba Q))v
n=20,1, .. n_m
“if p<b and p < g+a(p), then p < m(b, q).
From Lemmas 1, 2 and Lemmas 3, 4 of the paper [1] we have

LeEMMA 3. If Assumption H, is fulfilled and there exist qn,bi e A,
Gn+1 , bpyr < bg, K, n= 0,1, ..., such that

¢n+ a(be) < b,
then the equation

u=a(u)+gn
has a solution u = m(br, qu) < by being the non-decreasing function of both

variables by, gu, t.e. Mm(br, qns+1) < M(br, ¢z) and Mm(bri1, qn) < Mm(by, qn),
k’ h = 0, 1, “ee
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Moreover, if gnxq and by b, then m(bx, qu) xm(bx, q), M (br, gn) ™
Nm (b, gn) and, consequently, if qn 0, then m(by, qn)NO0.

DEFINITION. m(q) is called the mazimal solution of equation (1) if it
satisfies this equation and for any solution %(q) of (1) the inmequality
%(g) < m(q) holds true.

LEMMA 4 (see Lemma 5 of [1]). If Assumption H, is fulfilled, 4 = G,
and for any q e @G equation ‘(1) has a maximal solution m(q), p « G, and
P < a(p)+4q, then p < m(q).

Moreover, if qu 3¢, qni1<qu, n=0,1,.., then Mm(gny1) < Mm(qu),
m(qn) \m(q), and, consequently, if q.x0, then m(gs) 0.

ASSUMPTION Hj. The function A(u,v) is defined for w,v e A and has
the following properties:

1° A(4x 4)CG;

2 i u,u,v,ved and u <%, v<v, then A(u,v) < A(%,?);

3°if Up,vned, n=0,1,.., and Uz \u, v, v, then A(uUn, V)N
A (u, v);

4° w = 0 s the only solution in A of the equation v = A(u, u).

LeMmmaA 5. If Assumption H; is fulfilled and there exist ge A, be A,
such that g+ A (b, b) < b, then for any v < b there exists a solution m.(b, q)
< b of the equation

?

u=A(u,v)+q.
Moreover, if w<b and w < A(w, v)+q, then

w<myb,q) <b.
Proof. Put

Ug=b, Upy1 = A(Un,0)+q, n=0,1,..;
we have

Uy NMf(b, @) < b, w<U, n=0,1,..,
whence we get the assertion of Lemma 5.

LEMMA 6. If the assamptions of Lemma 5 are fulfilled, qni1 < ¢n < @,
n=0,1,.., g2 N0 and muy1(b, gnt1) 18 a solution of the equation

‘"’:A(uymn(bsqn))‘l‘qmlrl’ mo(b1%)=b’ n=20,1,..,

then ma(b, gn) ) 0.

Moreover, if wn+y < A(Wpi1, Wa)+ @ui1 and Wy < b, then wn < ma(b, qn),
and, consequently, wy 0 (if wpyy < Wp).

Proof. This lemma is the simple consequence of the previous one.

LEMMA 7. If Assumption H, is fulfilled, A = G and if for any v,qe G
there exist the maximal solutions m(q), my(q) of the equations

w=Au,u)+q, w=A(u,v)}+q,
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and
d<A(d,v)+¢q¢, deQ,
then d < my(q).
Moreover, if 4,0 and My 1(qn+1) 18 the maximal solution of the equation

“=A(u7mn(qn))+qn+lf me=m(g), n=0,1,..,

and wpi1 < A (Wni1y Wa)+ Gni1y Wo <My, = 0,1, ..., then my(gn) N0 and
Wn < Mn(qn) and, consequently, wpx0 (if Wnyr < Wy).

Proof. Let %, be a solution of the equation

w=A(u,0)+q+d;

then wu, > A (%, v)-+q and u, > d.

Put 441 = A(%Un,v)+¢q, n=0,1,...; we see that u,, < u,, whence
Un N My(q). By induction we get d < u,, n = 0,1, ..., and consequently
d < m(q).

Further, by induction we obtain m,.i(¢n+1) < Ma(qn), n=0,1, ...,
hence mg(gs) converges to an element m which satisfies the equation
% = A(u,u). By Assumption H;, m = 0.

By virtue of induction we get w,; < mn(gn), » = 0,1, ... The last
assertion of lemma is obvious.

LemmA 8. If Assumption H, ts fulfilled and the sequence {en} is such
that ene G, e 0, n=0,1, .., g+ a(d)<b, and the sequence {z,(¢)}
18 defined by the relation

Zni1(e) = et al2le)), 2fe)=b, n=0,1,..,

then z,41(e) < 2n(e) and 2p(e) MO0,

More general, if en™xn, then za(€)\ 2, where z is the maximal solution
of the equation w = n-+ a(u).

Proof. We have 2,(¢) = ¢+ a(b) < b = z(e). By induction we get
Znt+1(€) < zale), » = 0,1, ... According to Assumption H,, we obtain the
assertion of the lemma.

Remark 1. Lemma 8 is a generalization of Lemma 1, if & = 0,
n=0,1,.., then 2,(0) = an(b), n=10,1, ...

3. The main space E. We make
AssumpTiION H,. R 1s an abstract space such that

1° for some sequences {r}, xn e B, n = 0,1, ..., there exisis a uniquely
determined limit limz, = 2, x € R; limz, is invariant with respect to the

n—o00 n—00
change of a finite number of elements of {r,} (the relation limx, = x will
n—00

also be written n —x);
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2 if agn=s5€¢R, n=20,1, .., then limz, = s;
n—>o00

3° the function r(x,y) is defined on the product R X R and has the
following properties:

(a) r(x,y) G,

(b) r(w,y) =0 iff =y,

(¢) for any z,y,z2¢ R,

r(z,y) <r(r,2)+r(y,?);
4° for any z* ¢ R and b € G the sphere
S(z*,b) = [x: ze R, r(z,x*) < b]

ts a closed set,;

5° the space R is complete in the following sense: if ¢, e G, n = 0,1, ...,
¢n 20 and for zne R, n= 0,1, ..., the Cauchy condition

r(wn’mn+m)<cn’ n,m=0,1,...,

is satisfied, then there exists a limit y ¢ R of sequence {xn}.

ASSUMPTION H;. The function f(z) is defined on the sphere S(z*, b) C R,
z* e R, bed, and has the following properties:

1° f(x) e R;
2° for any x,y e 8(z*, b),
T(f(w)yf(y)) = a(r(w, y)) )

where the funmction a(u) salisfies Assumption H, and b+ b L obe 4;
3° there exists a q e A such that

r(e*, f(z*) <q and gq+a(d)<b.

AssumpTION Hg. Suppose that
1° the function f(z) is defined for x ¢ R, f(x) € R;
2° for any xz,y € R,

r(f(2), f(@) < alr(z, y),

where the function a(u) satisfies Assumption H, with 4 = G
3° for any q € G the equation

%= a(u)+gq
has a maximal solution m(q).
AssumpTIiON H,. Assume that

1° the functions fa(z,y), n=0,1,..., are defined on the product
S(x*, b) x 8(z*, b); falz, y) € R;
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2° for any x,9y,s,te8(z*, b), n=20,1, ..., we have

'r(fﬂ(w’ y)’fﬂ(sy t)) < A("(wa .S‘), r(y, t)) ’

where the function A(u,v) satisfies Assumption Hy, 2b € 4;
3° there exists q ¢ A such that for any n=0,1, ...,

r(@*, fale*, 2*) < q and q+A(b,b)<b.

AssuvmprTiON H,. Suppose that

1° the functions fa(x, y), n = 0, 1, ..., are defined on the product R x R,
fal®@, y) € E;

2° for any z,y,s,te R, n=0,1, ..,

r(falz, y), fals, 1)) < Afr(z, 8),7(y, 1),

where the function A(u,v) satisfies dssumption H,, 4 = G;
3° for any q € G there exists a maximal solution of the equation

u=A(u,u)+q.

4. Approximate iterations, local theorems. Now we are going
to formulate some basic theorems.

TurEOREM 1. If Assumption H; is fulfilled and the sequence {y,} has
the properties

1° yp e S(2*,0), n=10,1, ..., y,= z%,
2° T(yn+1,f(?ln)) < ény &n N0 and & < g,
then there exists im S(x*,b) a unique solution % of the equation

(2) z = f(x)
and
limz, =2, limy,=%,
n—~00 n—00
where .
Zni1 = f(xn) , Ty = o .
Moreover

(T, Ta) < an(b), 7(Z,Yn) <2n(e), n=0,1,..,

an(b) and zn(c) are defined in Lemmas 1 and 8.

Proof. At first we prove the convergence of the sequence {x,}.
Observe that z, € S(2*, b) and 7(xn, Zpim) < an(b), n, m = 0,1, ... Indeed,
we have r(z,, #*) < b and further, by induction, we get

P(@ny &%) = 7{f (@), f(@%) +7(f(2%), #*) < a(r(zn, 2%) +¢
a(b)+q<b.

N



Convergence of approximale iterations 79
Similarly, we have 7(%,, 2m) < b and by induction we obtain

"'(11}'”, w‘n+m) < T(f(xn—-l) ’ f(wn—1+m)) < a/(r(wn——l, a)n-—1+m))

< a(an1(b) = an(d) .

Because of Lemma 1, a,(b) 0. Therefore, according to Assumption H,,
there exists a limit Z of the sequence {x,}, Z € S(z*, b). Z is the solution
of equation (2). In fact, we have r(Z,f(Z)) < 7(Z, &) +7(f(Za-1), f(F))
< an(b)+ a(@n—1(D)) = 2an(b). Thus, if #n—>oco, we obtain r(Z,f(Z)) =0,
i.e. = f(Z). * is the unique solution of equation (2). Indeed, if there
exists another solution z’ ¢ S(x*, b) of equation (2), then we get r(z’, 2,)
< an(b) and r(z’, z) <r(x’', ®n)+7(2n, T) < 2ax(b). For n>oc0 we obtain
r(z',z) =0, lLe. 2’ = 7.

Now we shall prove the relation limy, = Z. We have

n—-oo

7 (Ynt1, T) < T(?/nﬂ,f(i'/n))‘l"'(f(?/n)af(i)) < éentalr(ys, 7).
Put 7y = r(yn, ). Now we get
Tni1 < enta(rn), 71o=17(Yo, Z)=r(x*, T) < b= 2e) .
By induction, we easily infer that r, < z,(e), i.e.

7(Ynt1, T) < Zna(€) .
Moreover,

P (Yny Yntm) < 7 (Yny )+ (Yntmy T) < 20(8) + 2nimle) < 22n(e) .

Because of Lemma 8, z,(g) 10, therefore, according to Assumption H,,
there exists a limit § of the sequence {y.}, ¥ ¢ S(«*, b). We also have
(Y, ) <7(Y, Yn) +7(Yn, T) < 22x(¢). Hence, if n -oco, we obtain r(z, y)= 0,
i.e. Z=y. Thus Theorem 1 is completely proved.

Remark 2. Instead of Assumption 2° in Theorem 1 one can
assume 7 (Yn, f(Yn)) < enN0, €, < ¢ and 7(ya, %) < b.
Indeed, we get

7(Yny B) < 7(Yn,y [(Yn) +7(F(Yn), f(7)) < enta(r(yn, 7)),
whence, by Lemma 3 we obtain
7(Yn, T) < m(b, ea) N0 .

However, it is obvious that condition 2° in Theorem 1 is more
convenient for applications then that mentioned above; in 2° there is
no requirement r(y,, ¥) < b.

Remark 3. If the assumptions of Theorem 1 are fulfilled and

e,,-l—a(?'(yn,?/na-l))QQngq’ gn 10,
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then
T (Yns1, T) < M(b, ¢a) .

Indeed, we have

T (Yn+1, Z) T(?jn+1 y J( yﬂ)) +7'( 7f(yn+1)) +r(f(yn+l)1f(i))
< 8n+a("('ym ?/n+1))+a(7'(?ln+1: 5_")) ’

now by Lemma 2 we get our assertion.

The sequence {y»} may be generated in a variety of ways, e.g. one
may define y, = fn—1(¥n-1) OF yn to be a fixed point of the function f,(x)
The functions fu.(z) may also be defined in a different manner, for instance,
one can assume that fu(z) = f(z), n =1,2,... (then y, = x,), or fa(x)
may be equal to the sum of the first » terms of a power series expansion
for f(r) (in some particular spaces).

THEOREM 2. If Assumption H; is fulfilled and

1° fa(z), n= 0,1, ..., are functions defined on S(z*,b), with values

in S(x*, b),
2° Ynt1 = fo(¥Yn), n=0,1, ..., yo= %,
° {falyn), f(y )) < Em EnNEy &< ¢ OF
3% r(fal), (@) < enl(®)Ne(2), &) < g and Assumption H; holds for
any fn(w
then there exists in S(x*,b) a unique solution Z of equation (2) and

(Yny T) < 2n(e)  or  7(Yn, T) < Zn(e),

where zn(e) and Zn(e) are defined in Lemma 8.
If, furthermore, en+a(r (Yr, Yn+1)) < gn < g, then 7(Yn+1, T) < m(b, gn).
Moreover, if e =0 or ¢(Z) = 0, then

lmy,=2z.

n—>oo

Proof. If 3° is fulfilled, then the assertion of the theorem is a simple
consequence of Theorem 1. We prove the theorem in the case when 3%
holds. We define

Zni(e) = a(‘Zn(E))+E,, y Zfe)=b, n=0,1,..,
where

& = &al®) = r(fa(T), f(T)) .
By Lemma 8 we have zn(e)\ 0. Now
r(ny E) < r(fn—l(yn—l)1fﬂ—l(‘?))+r(fn—l(i)af(§)) < a(r(yﬂ——ly E))"‘ €n—1 -
We get, by induction,
. r(Yn, T) < Zp(e), n»=20,1, ..
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Since of 2,0, Zz(¢) 0 and consequently y,—Z.

Remark 4. In practice it is more convenient if £,(z) is independent
of z. '

THEOREM 3. If the assumptions of Theorem 2 are fulfilled and Assump-
tion Oy holds for any fa(z), n= 0,1, ..., and if the fized point y, of the
Sfunction fo(z) (Yn's are uniquely determined) satisfies the condition r(T, Yn)
< b, then Y, >Z.

Proof. Since ¥, = fu(¥.), we have

7’(?7’717 z) < r(fﬂ(gn) ) fn(i’))+r(fﬂ(§')1fﬂ(yﬂ)) +7(Yn+1, Z)
< a(r(?']n, f‘_’))'l‘“("'(yn: 5))+"(?!n+l’ z).
According to Theorem 2 we get

(Y, ¥) < a("("jna 57)) -+ a(zn(e)) + 2nta(e) .

From the relation 2,(¢)™0 it follows that there exists n, such that
@ (2a(€)) + 2n11(e) = gn < ¢ for n > n,. Now, by Lemma 2 we obtain

“r(Yn, T) < m(b, qn) for n>=mn,.

If #n->o00, then m(b, g») N0 and consequently ¥, —>Z.

Remark 5. If it is nbt assumed that all the fi.(z), n=0,1, ...,
satisfy Assumption Hy but only that there exists fixed point y, of fa(x)
(in general not necessarily unique) and if 7(¥n,z) < b and r(yn, f(¥x))
< en N0, &, < ¢, then ¥, —Z (see [1]).

Remark 6. If assumptions 1°, 2° 3% of Theorem 2 are fulfilled
and Assumption H; is satisfied for any fu(z), » = 0,1, ..., then the
assertion of Theorem 2 holds true.

Indeed, from the relations

r(f(@), f(&')) < 7(f(@), fal@) 47 (fal@), fal@')) + 7 (fa(z"), f(2")
< en(@)+ enla”) +a(r(z, o) ,

together with 3%, it follows that Assumption H; for f(x) is fulfilled.

The following theorem is a generalization of the results of papers [2]
and [3]:

THEOREM 4. If functions fn(x) are defined on S(xz*,b) with values
n S(z*, b) and

1° Assumption H; for any fa(z), n = 0,1, ..., is fulfilled,

2° yn i85 a fized point of fa(x) and

T(fn+1(gn)rf(gn)) < on N0,

Annales Polonici Mathematici XXII 6
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3° 7(Yny Z) < by T(Yn+1, Yn) < Po < b, Do = 3a(po)+ 4,
4° p = 0 is the only solution of the equation p = 3a(p),
then
i "’(ﬁ%ﬂrf@n)) < &n

and there exists my such that e, < q for n = n,.
Consequently, Y, —>T, where T is a unique solution of the equation z= f(x)

in S(z*,d).
Proof. At first we have
r@ntry F@n)) < 7 {farr@nsr), 1 (Fn)

< 1 (fati@nt1)s Foss(Tn)) + 7 (fara(Tn) , F(F)
< a(r(%ﬂ, gn))‘i‘ On -

Further, we get

7 (Yn+1, Yn) < r(fn+1(gn+1)7fn+1(gn)) + r(fn+1(gn) ) f(l'7n)) +
+ 7 (FFn) s f@n1)) + 7 (fTn-1) s falTn1)) + 7 (fa(Fn-1) ) fal¥n)

<a (”(gnﬂy %))+ on+ On-1+2a ("’(ym gﬂ-l)) .
Put

Pn = m(Poy ¢n) , gn = @n+ 0n—1+2a(Pn-1), n=1,2,..

By assumption 3° we get p, < p, and further by induction and
according to Lemma 3 we obtain the inequality pn+1 < pp, n=0,1, ...
Now pnxp and the limit p is a solution of the equation

p= m(?orza(P)) y le.p=3-a(p).

By assumption 4° p = 0, i.e. p, 0.
Now according to Lemma 2, by induction, we obtain

T(Yn+1) Yn) < M(Poy @) = Pn, n=0,1,..
Finally, we get
*(Fnsr, [(Fn)) < @(pn)+ on = en N0 .

It is evident that there exists n, such that ¢, < g for n > n,. Now
the relation %, —>Z follows immediately from Theorem 1.
Remark 7. If Assumption H; is fulfilled for any fs(z),n=0,1,2, ...,
and
r(in+1 ’ f(gﬂ)) < e”\ 0 ’
then
r(fn+1(§n),f(gn)) < 0a N0 .
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Indeed, we have y,->Z and, consequently, 7(Yn+1, Yn) 1} 0. Finally
we get

7 {fas1(Yn), f(gn)) sr (fn+1(i¢7n) s fat1(Fnta)) +7 (fn+1(gn+1) ’ f(gn))
~ o~ at

< a('r(yn+1, ?/n))‘l‘&n = 0u 0.

THEOREM 5. If

1° the function f(x) is defined in S(z*, d), f(x) ¢ R,

2° Assumption H, s fulfilled,

3° r(fﬂ(a’) :l)),f(d})) < ea(®) N0, € 8(2”, b), &n(z) < ¢,
then there exists in S(z*,b) a unique solution % of equation (2). The
sequence {yn} is well-defined by the relation

Yn = falYny Yn-1) , Yo = T*, n=1,2,..;

moreover, if ¥(Ya,Z) < b, then yn—>7.

Proof. First of all we prove that Assumption H; with a(u) = A (%, u)
holds true.

In fact, we have
r(f(@), f®)) < r(f(@), fale, @) 47 (fale, @), faly, ¥)) +7 (f(y, 9), F(¥))
<A (1‘((0, ¥), (=, y))+5n(a’)+sﬂ(?/) ’

ra*, f(@*)) < rla*, fal@*, 2*) 47 (fala*, 2*), f(@*) < g+ eala®) -

Now if n —>oco we get our assertion. According to Theorem 1 we infer
the existence and uniqueness of the solution z of equation (2).

Now we prove that y, exists and ya € S(z*, b) for n = 0, 1, ...; ¥, can
be constructed by an ordinary iteration procedure. Put

kH—fﬂ(ym ’ y2,=w*, ve8(z*,b), k=0,1,..
By induction Wlth respect to k, we get yn e S(z*, b). Indeed
yn € S(x*, b) and if yr e §(2*, b), then

k+1

r(@*y yn" ) = T(:D sfn(?/'n’ 'v)) r(m*yfn(m z*) )+T(fn(w*a a"*),fn(y:: 'U))
< Afr(e *y Yn)y (0%, 0 )+7’(97  fala®, @%) < A(b, b)+¢<b
Set
Ax(b) = A(Ak—l(b)7 0) y Ab)=0b.
It is easy to see that A,(b)\0. By induction we obtain

Ty, Y ?) < Auld) .
6*
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k+p

In fact, we have r(yh, %) < b and if 7(ys, yi*®) < A(b), then

(y:‘a+l’ y'n+1+p) < T(fﬂ ym D), fﬂ(yk+pa 'v)) < A('r ym y:+p) 0)
< A(Aub), 0) = Apsa(d) .

Now we conclude that g >y, for k—0. We find that the equation

y=faly,v), ve8(z*b)

has a unique solution y», ¥, € 8(z*, b), n = 0, 1, ... From this it is obvious
that the sequence {y,} occurring in the assertion of our theorem is well-
defined and y. € S(2*, b).

Now we show that y, >Z. We have

" (Yny T) < 7(fal¥n, Yn—1), falZ, B) + 7 (fal&, 7), f(Z))
< A(r(:‘hh z), r(Yn-1, .’L‘))—}—e,, (Z) .
Putting 7 (¥, Z) = dn < b we see that
dn < A(dp,dpn_1)+en(), n=0,1,..

By Lemma 6 we have d,~0 and, consequently, y, >Z.

Remark 8. If Assumption H; is fulfilled, then assumption 3° in
Theorem 5 can be replaced by the following one:

F(fal¥ny Yn-1), f(¥n)) < enNO, en<gq.

Indeed, now we get

7(Yn, T) < T(fn(?/m./n 1), f(?/u))“l*"(f(?ln) f(a:)) &t a('r(y,,,x))

Finally, if r(ya, Z) < b, then 7(yn, Z) < m(b, &x) 10, ie. ¥y, >7.
Remark 9. In our considerations we have assumed that r(y., ¥) < b.

It may occur that this relation is difficult to be verified. In order to avoid
this difficulty it is sufficient to make the following assumption:

b>q+ad) and 2b>=q+a(2b).

Under this condition our lemmas also for b replaced by 2b hold true
and therefore the relation r(y., Z) < b is not required.

5. Approximate iterations. Non-local theorems. Now we
are going to formulate some theorems having non-local character.

THEOREM 6. If Assumption Hg is fulfilled and the sequence {yn} is
such that

r(yn+1,f(yn)) < &a N0,
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then there exists a unique solution X e R of equation (2) and Z = lima,,
n—oo

Z = limyn, where xn11 = f(xa), T, = x*, &* beipg arbitrarily fized element
n—o00
in R.

Proof. Put b= m(q), q=r{z*, f(«*). Now, if 2 is a solution of
equation (2), then

r(z, %) < r(f(@), (@) +7(fa*), 2*) < alr(e, a*)+q.

By Lemma 4 we get r(z,2*) <b. Clearly, all the assumptions of
Theorem 1 are fulfilled for the sphere S(z*, b) and, consequently, there
exists a unique solution z of equation (2).

Put % = m(r(yo, f(¥))). Let w, be the maximal solution of the
equation

% = a(%)+ max (e, k) ,

where
it €o it g =Ko,
max (60, ko) - ko j.f ko > Eo 9’
&+ ky otherwise .
Defining w,41 = a(wa)+ &4, n=10,1, .., we see that w, 0. We
have

Yoy E) < 7oy (o) +7(f(W0), F(B)) < (Yo, f(wo) +alr(y,, 7)),

whence ,
7 (Yo, &) < mr (Yo, F(%0)) = ko < w

Further, by induction, we get

r(Yn, T) < T(f(?/n—,l)1f(i))‘l'r(f(?/n—l)ayn) < a("('yn—ly E))‘l"‘gn—l
< a(Wn—1)+ €n—1 = Wn ,

ie. 7(Yn, ¥) < w, for n = 0,1, ..., and the second assertion of the theorem
follows,

THEOREM 7. If Assumption Hg i3 fulfilled and

1° the functions fa(x) are defined on R with values in R,

2° Ynia i Jfalyn), where y, is arbitrarily fized element of R,

3° "'(fn (Yn) s f(¥n) ) En,

then r(Yn, T) < Wy N0 (wy ts defined in the proof of Theorem 6), i.e. yp — .
Moreover, if Assumption Hg is fulfilled for any fa(z), n = 0,1, ..., and yn
are fived points of fa(x), then 7, —Z.
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Proof. The first part of the assertion of the theorem is the simple
consequence of Theorem 6. It only remains to prove that 3, >Z. We
have *

7Ty Z) < 1 (fal@n), Sa@) 47 (fa(Z), fa(yn)) +7(Yn+1, F)
< (1 (G, D)+ a(r(Yn, B)+7Yns1, 7)
< a(r (Fny B))+ 2 (w0s) + W41
whence, by Lemma 4, we obtain
?(Fny B) < m(a(0n)+ Wnsa) N0, ie. Fo>Z.
THEOREM 8. If Assumption Hg is fulfilled and
r(falz, 2), f(2)) < en(®) ™0,
then there exists a unique solution T of the equation
r = f(z).

The sequence {y.} 18 well-defined by the relation yn = fo(Yn, yn_l),'
Yo = a*, where x* is an arbitrarily fized element of R, and y,—>Z.

- Proof. The proof of the existence of z and y, is essentially the same
as that of Theorem 5 (see also the first part of the proof of Theorem 6).
Put g¢s= (%), n=0,1,.. Suppose that ¢g<g¢q,, where
g > r(s*, fa(s*, %), n=10,1,.., and mn(gs) is defined in Lemma 7.
Put u, = 7(Ys, %), n=0,1, ...
Now we have

Uy = 7(Yo, T) = r(2*, Z) < m(q) < m(qy) = My,

7(Yn, ) < "(fn(?/ns Yn-1), fa(T, 5))+"'(fﬂ(5; ‘E)’f(‘?))
<4 (r(:'/ﬂ’ Z), r(Yn-1, E)) + €a(Z) ,
Up < A(Uny Un—1)+qa, n=1,2,..

From Lemma 7 we obtain %, < mn(¢a) 0, and consequently y, —>Z.

THEOREM 9. If Assumption Hgis fulfilled for f(x) and fa(z),n =0, 1,...,
and if

1° 7(fn+1(n), f(Fn)) < on, where Gy is the fized point of fa(x),

2° there exists a solution p, e G of the equation

u = 3a(u)+ o+ 90+7((701 gl) ’

3° uw= 0 ts the only solution of the equation u = 3a(u),

then there emists the sequence {en}, ea\0, such that 7(Jni1,f(Tn)) < en,
n=0,1,.., and consequently Y, —>Z.

4
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Proof. Put p, = m(gs+ on—1+ 2a(ps-1)). From the definition of p,
we get

Do =2 m(91+ Qo+2a(Po)) = P1

and by induction we obtain p,\0.
Now (cf. the proof of Theorem 4),

T(inﬂrf('.?/‘n)) < a(r(??’n+17 ’377&)) +on,
7 (Yn+1y Yn) < a'(r@;wu gﬂ))"‘ on+ Qn—l+2a‘(7(§m yﬂ—l)) ’

whence, by Lemma 4, we find

T @ty Fn) < m{on+ en-1+20(r Fns To1))) -

Observe that 7(¥, %) < po. This is a simple consequence of the
definition of p,. Now by induction we have

T (Ynt1yYn) < Pn, n=0,1,..

Finally, we conclude

7'(?7n+1 ? f(??n)) < a(pa)+ on .

Put en = a(ps)+ 0n. It 18 easy to see that &, 0.
Now the relation %,-—>Z folloyvs from Theorem 6.

Remark 10. Theorem 9 is a generalization of the results of papers [2]
and [5].

References

[1) M. Kwapisz, On the approximate solutions of an abstract equation, Ann. Polon.
Math. 19 (1967), pp. 47-60.

[2) — Uwagi o pewnym algorytmie rozwiqzywania réwnan réiniczkowych 2wyczajnych,
Zastosow. Mat. 9 (1968), pp. 275-287.

[3) J.M. Ortega and W. C. Rheinboldt, On a class of approzimate iterative processes,
Arch. Rat. Mech. Anal. 23, No. 5 (1967), pp. 362-365.

[4] T. Wazewski, Sur un procédé de prouver la convergence des approzimations successives
sans utilisation des séries de comparaison, Bull. Acad. Sci., sér. sci. math. astr. et
phys., 8, No. 1 (1960), pp. 45-52.

(5] R. Zuber, O pewnym algorylmie rozwiqeywania réwnan réiniczkowych zwyczajnych
pierwszego rzedu (I), Zastosow. Mat, 8 (1966), pp. 351-363.

Regu par la Rédaction le 26. 10. 1967



