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Abstract. The boundedness as ¢— oo of solutions of Liénard’s equation
1) i+f(e)t+g(=) =p@),
and other equations, are considered by replacing (1) by
2) ¢ =y—-F(=z,t), 9=—g@).
For (1),

z [
F(o) = [ f(&)ds, P@) = [p()dr, F(z,t) = F(@)—P().
o 0

The results for (1) are similar to those of Graef, but the ‘method is also applied to
(3) G+ kf(x, k)b +g(@, k) = kp(t, k), k>1,

to obtain results involving constants independent of %. Similar results for % small are
obtained by a modification of the method, and also for (3) with % small and g(z) re-
placed by z, kp(t, k) by Fcoswt, provided that |w?—1|> ¢ > 0. Some special results
are obtained for (1) with f(z, &, t) in place of f(z).

The principal hypotheses for (2) are

F(z, t)signz > b> 0 for x| > 1,
g{z)signz > 0 for |z|> 1,

& F(xz,t)+G(x)>0c0 a8 |®|—> oo, where G(z) = fg(E)dE.
0

1. Introduction. The object of this paper is to establish the boun-
dedness as {—+ oo of the solutions of some differential equations of the
form

E+fle, 2, )0 +g(x,t) =0

subject to certain very general conditions. From the point of view of
physical interpretation it is natural to write this equation in the slightly
less general form

(1) E+flz, 2, )& +g(x) =p(t)
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in which the restoring term and the forcing term have been separated.
Important special cases of (1) are Liénard’s equation

(2) g+ flo)z+g(@) =p(t)

and the corresponding equation without a forcing term; these already
possess a considerable literature, which is comprehensively surveyed
in Graef [7]. It is usual to write

x 4
3 F() = [f(&)ds, P = [pdr, F(a,1)=F(z)—P(t)
0 0

and to replace (2) by the pair of first order equations
(4) & =y—F(w,t), y=—g).

Here F(x,t) has a very special form. In some cases, however, it
is desirable to obtain boundedness theorems with constants independent
of some parameter k& or ¢ which occurs in f, g or p; and some of these
cases can only be handled by reducing (2) to a more general equation of
type (4).

We assume that F(x,?) is continuous for all # and ¢, and that g(z)
18 continuous for all . Of course, for a trajectory starting when t = ¢,
we are only concerned with the behaviour of F(z,t) for ¢t > ¢,; but it is
convenient to state our hypotheses in a form independent of ¢,. Further
we assume the existence and uniqueness of solutions for assigned initial
conditions, not only for (4) but for all the second order differential equa-
tions and pairs of first order equations considered in this paper.

The additional difficulties imposed by considering a general F'(z, t)
in *(4) instead of that given by (3) are slight; indeed our methods and
results for (4), although discovered independently, are very similar to
those of Graef [7] for (2). In (2) and (3) it is usual to assume that P (f)
is bounded, and this with the continuity of F(z) implies that there is
a continuous function F,,(x) such that

(5) \F (@, 8)] < Fy(@).

In particular there is a constant ¢, such that
(6) | F(x, )| <<e, for |z|<1.

Again, since g(x) is continuous there is-a constant ¢, such that
(7) g(@)] < e for ol < 1.

By analogy with (3) we write

G(2) = [ g(&)ag.
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THEOREM 1. Suppose that the above conditions hold and that there i3
a constant b > 0 such that

(8) F(z,t)signz>b >0 for |o|>1,
(9) g(w)signz >0  for |z| =1,
{10) |F(z, t)| +G(x)>00  uniformly im t as |z|—o0.

Then there are constants B,, B, and a function i,(x,,Y,), all depending
on F and g, with the following property. If x(t), y(t) s the solution of (4)
satisfying
z(ty) =@y  Y(h) =Y

Jor some given ty, then x(t) and y (i) are defined for all t > t, and satisfy

lz(t)] < By, ly()| < By  for t = ty41,(m,, Yo).

This may be compared with Graef’s Theorem 3.5. Our proof gives
explicit values for B, and B, in terms of F' and g. We can thereby deduce
the results of Cartwright and Littlewood [4] giving bounds for the solu-
tions of

' &+ kf(@, kYo +g(w, k) = kp(t, k) (k=>1)

with constants independent of k¥ under much more general conditions
than theirs on f and g. An alternative proof of Theorem 1, giving different
formulae for B, and B,, implies their results for a small positive para-
meter & = ¢. Moreover, the use of the system (4) makes it possible to
show that all solutions of equations such as

2+e(22—1)24+2 = Ecoswt, |w:—1]=c¢>0,

where 0 < ¢ < 1, are bounded by constants which depend on F and ¢
but not on ¢ or w.
A similar transformation can be applied to the equation

(11) E+flz, 2, )@ +y(x) =0,

which is (1) without a foreing term. For this we write

h(@,d,1) = f(z,8,0)—f(@), F(2)= [f(&a¢
0
for some continuous function f(x) which is at our disposal; then (11) is
equivalent to the pair of first order equations
(12) & =y—F(z), §=—dihiz,s,1)—g).

THEOREM 2. Suppose that there is a continuous function hy(x, %)
such that

(13) hy (2, %) = h(z, @,1) >0
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and there is a constant b > 0 such that:

(14) F(x)signe >b>0 for 2| =1,
(15) g(x)signz > 0 Jor |zj>1
16) |F (2)] + @ (z)—> oo as l$|—>°°-

Then there are constanis B;, B, and a function t,(zy, y,), all depending
on F and g (and t, depending also on h), with the following property. If
z(t), y(t) is the solution of (12) satisfying

@(to) = @9y  Y(b) = Yo

Jor some given 1,, then x(t) and y(t) are defined for all t > 1, and satisfy

[@(t)] < By, |y(t)| < By for t=t,+1,(2y, Yo

Conditions (14) to (16) are the analogues of (8) to (10) in Theorem 1,
80 we may interpret this theorem as saying that for an equation without
a forcing term, increasing the damping cannot destroy boundedness. The-
orem 2 may be compared with the boundedness theorem of Levmson
and Smith [9] for equations of the form

&+ f(@, £)x+g(x) = 0.

Their boundedness conditions are closely tailored to their method
of proof, so much so that their paper has not attracted the recognition
it deserves. We believe that neither result can be deduced from the other,
but that for the kind of equations which occur in practice our theorem
will prove as applicable as theirs, and in some cases more applicable.

A serious weakness of Theorem 2 is that it does not allow for a forcing
term in the underlying second order equation, which therefore has to
be of type (11) rather than (1). The obvious way of treating the forcing
term is to incorporate it in the first equation (12), which would be ana-
logous to the treatment of the forcing term in the reduction of (2) to (4).
T he equations thus obtained, however, cannot be treated by the methods
of the present paper; and in the light of the following general counter-
example we believe that the transformation involved is the wrong one
to choose, and that the proper condition to impose on the forcing term
is the boundedness of p(?) rather than of P(f).

THEOREM 3. Given any continuous functions F(x) and g(z) there exwist
continuous functions P(t) and h(z, &) satisfying

[P() <1, h(z,2)=0
such that every solution of
(17) & =y—F(r)+P(1), g= —dh(z,s)—g@)

satisfies x(l)—oco as t— oo.
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If we assume that F(z) and P(?) have conﬁnuous first derivatives
f(z) and p(t), then (17) reduces to the second order equation

&+ {f(e)+ h(x, &)} & +g(x) = p(1);

so Theorem 3 effectively says that for a suitable forcing term we can make
all solutions of (2) diverge to infinity merely by increasing the damping
(in a way that depends on 2 as well as ). Because the details are tedious,
we postpone the proof of Theorem 3 and some related results to a further
paper; but we hope that the following physical analogy will make it
plausible. We make k(x, &) infinite for ¢ < 0; this means that movement
to the left is prohibited. We take P (t) = }sign(sin=t), so that p(?) corres-
ponds to alternate unit impulses to the right and to the left. Assume for
convenience of description that f(x) and g(x) are positive for all #, which
is the condition least favourable to rightward motion. An impulse to
the left merely ensures that z(t) remains constant until the next impulse
to the right. A unit impulse to the right then sets # = 1, and in the unit
time before the next leftward impulse «(?) increases by a non-zero amount
which depends continuously on its value at the time of the. rightward
impulse. It is now easy to see that z(¢) tends to infinity in a series of
jerks. The rigorous proof of Theorem 3 consists of showing that we can
approximate well enough to this situation within the conditions of the
theorem.

However, there is an alternative treatment of the forcing term by
incorporating it into the second equation (12), so that we replace (1)
by the pair of first order equations

(18) z=y—F(r), y=—zh(z,z,t)—g(@)+p(?)

with the same conventions as in (12). We can apply our methods, with
some modification, to this system; but it costs us nothing to consider
the more general system

(19) & =y—F(z), gy =dh(z, a,1)—g(z,1)
which corresponds to the second order equation
a;+{f(a:) +h($’ "ii t)}$+g(w1 t) =0.

THEOREM 4. Suppose that F(x), g(x,t) and h(x, £,1) are conltinuous
Junctions of their arguments and that there are a continuous function hy (v, )
and constants b, ¢, such that

hM(ma a’) = h(mf 5&7 t) = Or
(20) lg(x,t)] < e, Jor |z| <
>

1
(21) F(z)signe > b>0 for || > 1.
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Suppose also that there are continuous functions g,(x), g:(x) such that

g1(z) = g(z, t)signz > ¢,(7),

(22) ga(@) >0 for jm| >1
(23) IF(@)| + [ go(£)signédé—>co  as |a]—o00;
0
and suppose, moreover, that
(24) (F(@) =8} >2 [ (9.(86)—ge(£))dE  for #>1,
-1
(25) (F@)+b>2 [ (9.(8)—ge(8))dE  for o< —1.

Then there are constants B;, B, and a function ty(x,, ¥,), all depending
on F and g (and t, depending also on h), with the following property. If z(t), y(t)
18 the solution of (19) satisfying

z(te) = oy Y (b)) = Yo
Jor some given t,, then x(t) and y(t) are defined for all t > t, and satisfy
lZ(t)| < Bs, |y(@) < Bs for t=t,+1t5(%0, Yo)-

As it stands this theorem does not yield a satisfactory result for
equations containing either a large or a small parameter; for (22) will
fail for the natural type of equation with a large parameter, and (24)
and (25) will fail for the natural type of equation with a small parameter.
In the large parameter case this seems inevitable; for examples similar
to that of Theorem 3 show that there can be no analogue of the results
of Cartwright and Littlewood [4], or of our Theorem 7. We believe that
a satisfactory small parameter result could be obtained by modifying
the proof of Theorem 4 on lines similar to those of sections 10 to 14; but
we have not examined this question in detail.

In this paper we have confined ourselves to the case when the damp-
ing term af(x, &, t) acts against motion everywhere outside the ecritical
strip [z| < 1. Most previous authors — such as Langenhop, Levinson,
Opial, and Reuter — who have considered such equations have consid-
ered more general critical regions, though with conditions more restric-
tive in other ways. Our methods can be applied to equations with more
general critical regions, though the details become more complicated.
We intend to consider this case in a further paper, and therefore postpone
a comparison of our results with previous ones. However, we feel bound
to mention one historically important equation (1) which does not appear
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to fall within the hypotheses of Theorem 2 or 4, but which can be brought
within them by a suitable change of variables. This is Rayleigh’s equation

(26) . E+k(3F—2)+2 =0,
which can be reduced to the form (4) by writing x = —4,y = 2z so that
& =y—k(}s’—2), g=-—u.

However, no such device would be available if the restoring term =z
in (26) were replaced by g(2), though Reuter has shown that the solu-
tions are bounded under quite moderate conditions on g(z).

Various authors have considered equation (2) under so-called
‘one-sided’ conditions. Graef has pointed out that results of this type
can be ftrivially deduced from theorems with two-sided conditions by
increasing ¥ in (4) by a constant. It is also possible to obtain theorems
analogous to our Theorems 2 and 4 but with ‘one-sided’ conditions.

We are grateful to Dr N. G. Lloyd for a number of valuable sugges-
tions.

2. Standardization. Other types of condition in Theorem 1, such as
(27) liminf {min, F(z, t)signz} > 0

|z|-00

can be reduced to the form (8) for some b. For (27) implies that there
exist @g> 0 and b > 0 such that F(z,t)signz > b for |z|> x,. Putting
x = wp&’ we obtain a system in z’, ¥ for which F(a’, t) satisfies (8). Simi-
larly if

(28) g(x)signz > 0  for all large ||,

there exists an x, > 0 such that g(z)signz > 0 for |z| > z,; and again
(28) can be reduced to (9) by writing x = z,x’. For the conditions of The-
orem 1 as a set, the larger of the two values of 2, must of course be taken.
Condition (b) is imposed solely in order to ensure that (6) remains valid
even after this normalization.

Similar remarks apply to the other theorems.

3. The nested domains for Theorem 1. Theorem 1 is an obvious
consequence of the following theorem, which is also essential for the
application of Brouwer’s fixed point theorem in order to show the exist-
ence of a periodic solution of (4) when F(z, t) is periodic.

THEOREM 5. Suppose that the conditions of Theorem 1 hold, and let
x(t), y(t) be as in Theorem 1. Then there is a sequence of domains D, « D,
< D, c ... such that each D, is bounded by a Jordan curve J, and the union.
of the D, is the entire (w, y)-plane. If the point (x,, y,) i8 in D, ,—D,,
then (z(t), y(t)) is in D, ., for all t > t,; as t increases, (x(1), y(t)) crosses J,

3 - Annales Polonici Mathematici XXIX.3
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into D, and thereafier remains in D,. Moreover, there is a t,(n) depending
on n but not on %y, Yo such that (x(t), y (1)) is in D, for t > ty+1t,(n).

COROLEARY 1. Theorem 1 holds.

CoROLLARY 2. Under the conditions of Theorem 1, each solution of (4)
lies in D, from a certain time onwards.

COROLLARY 3. Suppose that the conditions of Theorem 1 hold and that
F(z,t) is periodic in t with period 2x/w independent of x. Then there is
a solution of (4) which is periodic with period 2w|w, and it lies entirely
n D,.

It is easy to see that the Corollaries follow from the Theorem, to-
gether with Brouwer’s fixed point theorem in the case of Corollary 3. In
the next three sections we give a proof of Theorem 5. In Sections 11 and 12
we give an alternative sequence of domains with associated Jordan curves,
for which the Theorem again holds.

4. Preliminary lemmas. Write
(29) F,(r) =ni[F(x, t)signz],
¢
(30) I' ={(z,y): y = Fp(x)signaz}.

If the conditions of Theorem 1 hold, F,,(x) is at any rate upper semi-
continuous and

F . (z)=>b>0 for x| >1;

in most cases of interest ¥, (z) will be continuous, as in Fig 1. Since (9}
implies that @ (z) is continuous and increasing with x in # > 1, the point set

(81) #(0) = {(z,y); (y—b)* =C—2G(z),2>1,y > b}

is a finite or infinite Jordan arc provided that C > 2G'(1), a condition
which will always be satisfied in what follows. Through any. point (1, )
with Y > b there is just one such arc. We wish to prove that, with some
abuse of language, o (C) crosses I' if (10) holds and C is large enough.
LeEMMA 1. Suppose that the conditions of Theorem 1 hold and G(x)— oo
a8 x—>oo. Then for every Y > max(Fm(l),b) there is an x(Y)>1 with
the following property: if o/ (C) ts the arc (31) through (1, Y) and (v, vy)
i8 on & (C), then x(X) is the least value of » such that y < F,, (x). Moreover,
for any fized X > 1 there exists Y,(X) such that z(¥Y) > X for Y > Yy (X).
Since G (z) increases with # on «(C),y decreases; and 2G(x) < C
for all points of «(C). Since G(x)—>oco as &— oo, this implies that &« (C)
ends at some point (%,(C), b) and 1 < z < #,(C) on #(C). Now on «(C)
the function F,,(#)—vy is negative at # = 1, non-negative at z = ,(C),
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and upper semi-continuous; so there is a least x, say (YY), at which it
is non-negative. Moreover, if ¥ is large so is ; and since

[F, (@( X)) —b)2+26(x(Y)) = C,

at least one of ¥, (x(Y)) and G(z(Y)) is large. Since G(x) is continuous
and F,(x) is bounded above by the continuous function F(z,0)inz > 1,
this shows that #(Y) is large which gives the result required.

LemMMA 2. Suppose that the conditions of Theorem 1 hold and F(x, t)— oo
uniformly in t as z—oco. Then the result of Lemma 1 holds.

Since F(z,t)—occ uniformly in ¢, F, (z)—>o0c as x—>oco. Hence there
is an ,(C) such that F,(z,(C)) > Y; and so F,(x)—y is non-negative
at x = x,(C). The rest of the proof is the same as for Lemma 1.

Since G(x) is increasing in & > 1, (10) implies that the extra hypo-
thesis in at least one of Lemmas 1 and 2 is valid; so in either case the
conditions of Theorem 1 imply the conclusions of Lemma 1.

5. The construction of J, for Theorem 5. Let b, ¢,, ¢, be the constants
in (6) to (8), and let

Y, =¢+2¢b0"'+(n+1)b, X, =ua(Y,),

where z(Y,) is as in Lemmas 1 and 2; this is legitimate since Y, > ¢,
> F,(1) by (6). Let

P, = (-1, Y,,——b), Qn=(17 Y.);
let o7 (C,) be the arc (31) through @, and let
Rn = (xrn Zn)

be that point of «(C,) at which z = X,,. Let <, be the subarc of & (C,)
from @, to R, and let o, be its reflection in y = b. Then «, joins

8, =(X,,2b—%,) toT,=(1,20—7Y,).

Let P, =(1,b—X,) and let Q,, R, S,, T, be obtained from P,
in the same way (with appropriate reversals of sign) as @,, R,, 8,, T,
were obtained from P,. The curve J, consists of the straight line joining
P, to Q,, the arc &, joining @, to R,, the vertical line z = X, from R,
to 8,, the are o, from S, to T,, the vertical line x = 1 from T, to P,
and the corresponding arc P, @, R, S, T, P,; it is illustrated in Fig 1.

It is easy to verify that J, is a simple continuous closed curve, and
that if D, is its interior then D, <« D, <« D, c ... and the union of the D,
is the entire (xz, y)-plane. Moreover, T, = P,_, and T, = P,_,, so any
trajectory in D, , which crosses either of the lines # = 41 in the sense
of decreasing (x| thereby enters D,.
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x=—1 x=0 x=1

Q, r
L]
Py =l “An
Rn
/1 y=b
YaWi / =
/;v /'v y=0
J o
R Tn
r / P’;
A4, -
7 g
Fig. 1.

6. Proof of Theorem 5. To prove Theorem 5 it only remains to show
that no trajectory can cross J, outwards, that so long as a trajectory
remains outside D, it spirals clockwise round D,, and that a trajectory
can only remain in D, , — D, for a bounded time.

On or above P,Q, in |z| <1 we have & =y —F(x, 1) > 2¢,b7' > (
and so a trajectory of (4) in this region satisfies # > 0 and

b
2

g
I y—F(z,1)

y

by

dy_
| =

while the slope of P,Q, is 3b. Hence a trajectory can only cross P,Q,
downwards into D, , and it only remains for a time at most be;? in |z < 1
above P,Q,.

On o, and «,,
d )
E{(y—b)2+2G(w)} = 2y(y —b)+2ag(z) = 2{b—F(x, t)}g(x)< 0

8o that a trajectory can only cross these ares into D,. On R, S, and T, P,
a trajectory lies below I', and hence # < 0 and the trajectory can only
cross these arcs into D, . Moreover, in z > 1 we have y§ < 0, so that all tra-
jectories are moving downwards. Since a trajectory cannot cross @,.,Q,
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to the left, and by crossing T, T, . ; to the left it enters D, since P, = T, .,
we need to show that a trajectory can only remain in the part of D, , — D,
to the right of x = 1 for a bounded time. Since g(x) is continuous and
strictly positive in z > 1, there is a g, > 0 such that

gz)=¢g,>0 for 1w X,.

Thus § = —g(x) < —¢gpqy in (D, —D,)N(xz > 1), and so no trajectory
can remain in this region for a time greater than 2(¥,,, —b)gy},.

These results, and the corresponding ones for the symmetrically
placed arcs and regions, complete the proof of Theorem 5.

7. The constants B,, B, in Theorem 1. It is easy to see that the
extreme values of ¥ on J, occur at Q, = (1, ¢;-+2¢,b~' +b) and at Q,
which is the image of @, in the origin; thus we can take

(32) B2 - 01+202b_‘1+b'

The maximum of z on J, occurs on R,S,, where # = X,; and X,
is the least value of x greater than 1 such that

(33) {Fm (2) — b} +2G () > (c1+26,577)* +-2G(1).

A similar result holds for the minimum of # on J,; it is the greatest
value of z less than — 1 such that

{F, () —b}*+2G (x) = (¢, +2¢,b7 1) +2G(—1).

It follows from (9) that G(z)>G(1) in > 1 and G(z) > G(—1)
in z < —1. Hence in particular, if there is an. > 1 such that #,(z) > B,
and 7, (—x) > B,, we can certainly take that # as B,; this remark will
be used in the proof of Theorem 7.

8. Second order equations. From Theorem 1 we can immediately
deduce Graef’s boundedness theorem for solutions of the second order
equation (2). We state it explicitly, largely in order to define the constants
B, and B;.

THEOREM 6. Suppose that f(x), g(x) and p(t) are continuous and that
there are positive constants b,, b, such that

[P (8)] < by,
IF(z)signe > b, + b, for |z|>1,
g(x)signz > 0 for x| >1,

(34) | P (2)| + G (z)— o0 as |x|—oc.
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Then there are constants B,, B, such that each solution of (2) satisfies
2 < B}, 14t < B,

Jor all large enough positive i.

To prove this it is enough to verify that F(z, t) = F(x) — P(t) and g(z)
satisfy the conditions of Theorem 1, which is obvious. To obtain formulae
for B; and B, we define ¢, by (7) as before and b, by

|F(x)| < by for |x|<< 1.
Thus we can take b = b, and ¢; = by, + b,; and we have
Fo(x) = F(x)signxz —b,.

In the open domain D, we have F, (r) < B, because «/, lies above I
except at its right-hand end point; thus |[F(z,t)| < B,+ 2b, and we can
take

(35) B; = 232 + 2b1 = 402b2-l + 4:b1 + 2b2 + 2b3 .
Also we can take B; = B,.

9. Large parameters. Consider the equation
(36) &+ kf(x, k)2 +g(2, k) = kp(2, k),

where &k > 1 is a parameter which should be thought of as large; for each

value of k¥ we assume that f(x, k), g(z, k), p(t, k) are continuous func-
tions of x or ¢ respectively. Let

T T ¢
F(o, k) = [ f(&,k)a, Gz, k) = [ g(¢,k)aE, P(t, k) = [p(r, kde

and suppose that there are constants ¢,,, b,s independent of k& such that
Ig(2, k)| < ¢ for |z| <1,
| F(x, k)| < byg for |z} < 1.

THEOREM 7. Suppose, in addition to the conditions just stated, that
there are positive constants by, , by, independent of k such that for all k > 1,

\P(ty )l < s,
F (@, k)signz > by, +bes  for l@| > 1,
g{z, k)signx > 0 for |z =1,

(37) |F(x, k)| —>00  uniformly in k as |z|—>oo.
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Then there are constants Bj,, By, independent of & such that each solu-
tion of (36) asatisfies
(38) @) < By, |8(t) < kBy,
for all large enough posiiive i

Note that (37) here is not the natural analogue of (34) in Theorem 6;
but Theorem 7 would cease to be true if we replaced (37) by the weaker
condition ’

|F(x, k)| +G(x, k)}—>o0o uniformly in %k as |z|—oo.
The hypotheses of Theorem 7 imply those of Theorem 6 with
b, = kby,, b, = kb,,, by = Kby, €y = Co2)
$0 we can use the formulae for B, and B, in Section 8. In particular (35)
gives
B; = 4k~ cozbo_zl + k(4bg; + 2bgg + 2by3),
and since k > 1 this gives the second inequality (38) with
Btl)z = 4y, bo_zl + 4bg; + 2bgy + 2By, .

To prove the first inequality (38) for some B, we note that in this
case

F,(z) = kF (z, k)signx — kby, ;

and by (32) and the last sentence of Section 7 we have only to choose By,
8o that both F, (B,,) and F, (— By,) exceed

2k~ Coabgs" -+ T (boy + boa + bos)-
For this it is enough to choose B,, independent of k so that
\F(+ By, k)| = 2609bg' + 2bg; + by + bos

for both choices of sign; and this is possible by (37).
A result of this type is a necessary preliminary for work on van der
Pol’s equation

(39) E+k(@x*—1)z+x = kbcoswi

with large parameter k¥ and forcing term. Cartwright and Littlewood {10]
showed that for certain values of b between 0 and % there are two stable
periodic solutions with long periods 2(2n+ 1)n/w and 2(2n—1)x/w be-
gides & large number of unstable solutions with various periods, giving
rise to a topological mapping of great complexity. Levinson [8] showed
that an equation of somewhat similar type but piecewise linear has similar
properties, and the work of Cartwright and Littlewood holds for more
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general equations. Lloyd [11] has shown that if b> £, then for large e-
nough % all solutions of (39) tend to a single solution with period 2n/w.

10. The case of small F(z,t). If b = &b, in (8), where £ > 0 is a small
parameter appearing in the differential equations (4) and b, is independent
of ¢, then the value of B, given by (32) is large; indeed B, > 2¢,b; "¢,
The same then happens for B,. However, if (10) is replaced by the strong-
er condition that| G(x)—>oo as |z|—>oo, a modification of the proof of
Theorem 5 gives constants independent of ¢ for 0 < e < 1. As in Theo-
rem 7 the method allows us to consider a system in which the functions
F(x,t) and g(x) depend on ¢ in a very general way, provided that certain
inequalities are satisfied uniformly for 0 < ¢ << 1.

Instead of (4) we consider the equations

(40) z=y—eF(x,t,¢), g = —g(x,*),

where F(x,1,¢) is continuous in » and ¢ and g(x, ¢) i3 continuous in z
for each . Here ¢ is a parameter which satisfies 0 << ¢ << 1 and is to be
thought of as small. As usual we write

Gla,e) = [ g(&, &)d&;

and we suppose that there are constants c¢,;, ¢,, independent of ¢ such
that

(41) l [F(z,t, &)l <ey for @l <1,
lg(z, &)l < ¢ Tfor |z < 1,

THEOREM 8. Suppose, in addition to the conditions 'just stated, that
there i8 a constant b, independent of ¢ such that

F(x,t,e)signe>b,>0 for x| >1,
=1,

(42) G(x, e)—>00  umniformly in e as |z|—>oo.

g(x, g)signz > 0 for (x|

‘Then there are constants B,y By, independent of ¢ such that each solu-
tion xz(t), y(t) of (40) satisfies

(43) |z (t)] < By, _ [y (1) < Bys

Jor all large enough positive t.

We shall first give a modified proof of Theorem 5, in which more
care is taken to balance out the effect of the restoring force g(z,¢) in
the critical strip |z| < 1. For this purpose we construct a new sequence
of domains D) bounded by closed Jordan curves J,. When & is small,
this will give better constants B,, B, in Theorem 1 than those obtained
in Section 7, and Theorem 8 will follow immediately.
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11. The construction of J). Write
y = (2¢,6,07 M),

‘We replace the straight lines P,Q, and P,Q, of J, by arcs &, 4, of

(44) Y*+2G (x) — 2xe ey = (e + ) +2¢,(1 +¢,97 1) + 2nyb,

(45) Y' +26(2) +2w010y ™" = (c1+9)" +205(1+¢,97") +2npb
resi)ectively, with y positive on %) and negative on #). The arc %,
joins Py onx = —1 to @y on o = 1, and £ joins P, on z =1 to Q)
on x = —1. By (6) and (7),

(46) y=e+y on B, y< —c¢—y onB,.

The rest of the construction proceeds as for J,,. We write @ = (1, ¥1)
and let & (C,) be that arc (31) which goes through Q,. Let R — (X, Z)
be the point of «(C,) at which # = X = x(X,), where x(Y) is the
function in Lemmas 1 and 2, and let <, be the sub-arc of & (C}) from
Q, to R, and .d be its reflection in y = b. Then d joins

= (X»,20—2;) to T =(1,20—X).

We obtain R., S’ and T, analogously from Q. The curve J,
consists of the arc 4, from P), to @), the arc o, from @ to K, the vertical
line z = X, from R} to S, the arc o) from S to T, the vertical line
z =1 from T, to P}, and the corresponding arc P, Q) R Sy T, Pr;
it is sufficiently similar to the curve J, of Fig. 1 for a further diagram
to be unnecessary. The only point of ambiguity in the diagram is resolved
by the following lemma.

LeMMa 3. T is above P}, on @ = 1, and T is below P_, on © = —1,
Jor n> 1.

It is enough to prove the first statement. Let.n,_, be the value of y
at P,_,; then by comparing (44) and (45) at # = 1 we have

Y2 —ni_, = 4dci0p7 - 29b = 4yb.
Again by (46) we have
Y —n._, = 2(6,+9) > 2y.
Division now gives
Y+ < 2b
so that in an obvious notation

y(Ty)—y(Pp_y) = 20— ¥, —n,_, > 0.
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12. The domains D;. We have to prove that Theorem 5 remains
true if the domains D, and curves J, are replaced by D} and J respec-
tively. It is easy to check that J, is a simple continuous closed curve,
that the D) form an increasing sequence of domains and that their union
is the entire (z, y)-plane.

The first step is to prove that if a trajectory crosses J;, it crosses
it inwards and thereby enters D). At any point of &) a trajectory of (4)
satisfies

d
E{y2+2G(w)—2wclczy‘l} = —2F(z, t)g(2) —2¢;6,y {y— F(z, 1)) < 0

by (6), (7) and (46); so a trajectory can only cross %, downwards. A similar
argument shows that a trajectory can only cross %, upwards. For the
remaining arcs of J, we need only repeat the arguments used in Section 6
for the corresponding arcs of J,,. "

It remains to show that a trajectory can only remain in D +1—D,"‘,
for a bounded time, and here again we imitate the argument of Section 6.
Above 4 in |z] <1 we have

z=y—F(z,l) >y

by (6) and (46), so a trajectory can remain for a time at most 2y~ ! in
J#|' < 1 above #,. It leaves this region either by crossing %, into D} or
by crossing the line # = 1; and as in Section 6, the trajectory can only
stay in # > 1 for a bounded time. It next crosses * = 1 to the left, and
this crossing must be below I" and above T, ,. By Lemma 3, the trajec-
tory enters D, not later than this crossing. A similar argument works
for the other half of D, — Dj.

13. Proof of Theorem 8. It follows from the results of the last section
that each trajectory of (4) enters and thereafter remains in D;. We now
apply this to equations (40) of Theorem 8. The maximum of y on J,
is attained at some point of &, and since every point of %, isin |z| <1
we have

(47) YE< (e 4+ )2+ 4e,(1 +017’_1)
on it, by (7) and (44). In our case
€L = &0y Gy = Crpy Y = (2011‘31sxb;1)”2

and combining (47) with the corresponding result on %; we see that we
can take

(48) B122 = (011+?)2+4012(1+0117_1)

which is independent of e.
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For the first inequality (43) we note that the maximum of 2 on J ;
is # = X, which is the least value of z greater than 1 such that

(49) {F, () —b}24+2G(2) > (Y5 —b)2+2G(1);
here G(1) < ¢, and Y, is given by
Yo" = (63 +7)2+262(1 4 26,97") —2G(1).
Thus in our case the right-hand side of (49) is bounded above by
a constant independent of ¢. Taking account also of the similar argument
for the minimum of # on J3, we see that to ensure the first inequality
(43) it is sufficient to choose By, so that both G (B,;) and @( — B,;) exceed

certain constants which are independent of . That this can be. done,
with B,, independent of ¢, follows from (42).

14. Second order equations with small parameter. Consider the equation
{50) &+ef(w, )@+ g(x, &) = ep(t, &),

where 0 < e< 1 and f(«, €), g{z, ¢) and p(t, ¢) are continuous functions
of x or ¢ respectively for each ¢. Let

z x t
F(z,e) = [f(&,e)d8, G(z,e) = [g(&,e)dE, P(t,e) = [p(r, e)dr;

then for F(z,t, &) = F(x, ¢)—P(t, ¢) we can apply Theorem 8 to obtain
bounds for the solutions of (50). We assume that there are constants
€534 by independent of ¢ such that

(51) lg(z, &)l < €, for |2/ <1
(52) |F(x,e)] < by for |z <1.

It should be noted that in some important examples of (50) the
function f(x, ¢) and g(«, ¢) are independent |of e, and then (51) and (52)
are satisfied in virtue of continuity. However, in the case of Duffing’s
equation and problems about hard and soft springs g(z, ¢) = w?(z + caz?)

occurs, so that it is worth preserving a generality which involves no addi-
tional arguments. '

THEOREM 9. Suppose that, in addition to the conditions just stated,
there are positive constants by,, by, independent of ¢ such that for 0 < e < 1,

[P (T, )] < by,
(53) F(x, ¢)signe > by + by, for |21 > 1,
g(z, e)signe > 0 for |x| =1,

G(x, e)—>o00 uniformly in ¢ as |rv|—>oo.
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Then there are constants B.,, B,, independent of « such that each solution
of (50) satisfies
(54) l@(t) < By,  [4(1) < B

for all large enough positive t.»

The hypotheses of Theorem 8 are all satisfied, so the first inequality
(54) with B;, = B, follows from the first inequality (43). For the second
inequality we argue as in Section 8. We have, in the notation of (29),

F,.(x) > eF(x, £)signe — eb,,;

and in the open domain D] we have F,,(z) < B,, because <, lies above I’
except at its right-hand end point; thus

|F(a'"7 t)| = |eF(z, 1, )| < Byy+ 2¢by,

and we can take B, = 2B, +2b,,.

Under the conditions stated, equation (50) includes various cases
of resonance, in particular van der Pol’s equation with small damping
and forcing term:

(55) Z+e(x:—1)z+ 2z = eacos wt

with w?*—1 small. This equation was the subject of intensive study not
only by van der Pol but also by Andronov and Witt and others in the
early days of the theory of non-linear oscillations conneeted with radio;
see for example [1] and [13]. Indeed the Poincaré—Bendixson theory of
limit cycles and the Poincaré theory of stable and unstable nodes and
foci and of saddle points seem to have been first applied in this area by
Andronov and other Soviet authors to the system of two first order equa-
tions in 4 and a obtained by supposing that the solution of (55) was of
the form

x = Acos{wt+a), & = — Awsin(wt+a),

where A and a vary slowly. These equations were also studied later by
Cartwright and Littlewood [2] and Gillies ([5], [6]) from a more strictly
mathematical point of view. For a rigorous treatment it is essential to
establish first that «(t), 2(¢) are bounded by constants independent of &
and o for sufficiently large positive &.

Equation (50) also covers some of the cases which arise in connee-
tion with asymmetric resonance in Duffing’s equation. Loud [12] has
made a detailed study of the equation-

(56) E+ex+g(x) = ep(t),

where ¢ is small, ¢ > 0 is small and is chosen after ¢, and p(¢) is periodic.
His main interest was in the case in which periodic solutions of (56) reduce
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for ¢ = ¢ = 0 to periodic solutions of
(57) Z4+g(@) =0

with the same period as p(t). It is not clear that this means that (56)
is necessarily of the form (50); for ¢ may be small compared with ¢, in
which case condition (53) will fail.

15. The non-resonant case with small parameter. It is evident from
the linear equation
(58) E+ex+xz = acoswt

that if the period of p(t) is close to that of solutions of the unforced equa-
tion (57), then solutions of

&+ ef(x)i+g(x) = p(1)
are not necessarily bounded independently of ¢ for large positive £. For if
o =1 the solutions of (58) all tend to the particular solution x(¢)
= ae~1sint, and there is a similar effect for all w near 1. It is well known

that when ¢g(z) is non-linear the period of a periodic solution of (57) depends
on its amplitude; and little is known about the solutions of

E+g(x) =p(t)

with p(t) periodic except in certain very special cases such as those con-
sidered by Morris. However, the equation

(59) 2+ ¢ef(z,€)2+2 = b,coswt

can be reduced to a system of the form (40) provided that
(60) lw2—1>=¢> 0

for some c¢ independent of ¢ and w. For this we write -

b, cos wt . b, wsinwi
(61) T =2———, Y=z2+eF(z,e)+ —y)

1— w? 1— w?
where as usual F (z, ¢) is the indefipite integral of f(z, ¢). Now (59) becomes
(62) z=y—cF(z,¢e), 9y = —w.

THEOREM 10. Suppose in addition to (60) that there are a constant b,
and a continuous function Iy, (2), both independent of € and w, such that

F(z,¢e)signz > b, >0 for |2| > 1,
(63) |F (2, €)] = < Fy(2).

Then there are constants B,,, B,, independent of ¢ and o such that each
solution of (b9) satisfies

lz(t)f < By, ()< B,

for all large enough positive t.
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To system (62) we can apply Theorem 8, renormalized so that
the critical strip is |z| < |b,c”'| +1 instead of |#| < 1; condition (41)
holds because of (63). It folows that 2(¢) and v (¢) are eventually bounded
independently of ¢ and w. The result for z(f) follows from the first equation
(61); and since by (63) this implies also that F(z, ¢) is eventually bounded,
the result for 2(¢) follows from the second equation (61).

Similar arguments can be applied to equations like (59) but with
a more general right-hand side, provided the right-hand side contains
no almost-resonant term.

16. Proof of Theorem 2. Our proof of Theorem 2 is a straightforward
modification of our proof of Theorem 1; the main step will be to show
that the analogue of Theorem 5 for the system (12) holds with the same o,
and D, as before. In the notation of Sections 4 and 5, F(x, t) is now simply
F(z), so that F, (z) = F(x)signz and I'" is the Jordan curve y = F(x).
In particular, # > 0 above I' and ¢ < 0 below I

We now compare trajectories of (12) with trajectories of

(64) & =y—F(=), g=—g).

Above I', a trajectory of (12) has at any point the same horizontal
velocity and a greater downward velocity than the trajectory of (64)
through that point; below I' just the opposite is true. By Theorem 5 a tra-
jectory of (64) which crosses J, must cross it inwards, into D, . Inspection
of Fig. 1 shows that the same must happen a fortiori for trajectories of (12).

It remains to show that a trajectory of (12) can only spend a bounded
time in D, ., — D,. As before, & > 2¢,b™" in |z| <1 above P,Q,; so a tra-
jectory of (12) can spend a time at most bey! in this region, and leaves
it either by entering-D, or by entering x > 1. In the part of D, ,n{r > 1}
above I,

y< —g9(@) < — 0y <0

with the g,,, of Section 6; so-a trajectory of (12) can spend a time at
most Y, ,/g,,, in this region. A trajectory can only leave this region by
crossing I" vertically downwards into the part of D, ,Nn{z > 1} below I,
and a trajectory can only leave this latter region by crossing # = 1 to the
left, when it enters D, if it has not done so already. Now let h,_, be a con-
stant such that

Ppir = hy(@, 2) = h(z,2,8) >0 in D,,,,

where & = y— F(z); the existence of h,,, follows from the continuity
of hy («, 2) as a function of # and y. In D, , N {x > 1} below I' every tra-
jectory of (12) satisfies

hﬂ.+1d’+'y = {hn+l_h(wv 'j")t)}d"_g(w) < — 1 < 0;
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and since k, ,z-+y is bounded in this region, a trajectory can only stay
in this region for a bounded time.

This, together with the corresponding arguments for the other half
of D,,,—D,, proves the analogue of Theorem 5 and thereby also proves
Theorem 2. It is clear that the argument also works for the J, and D}
of Sections 10 to 12.

17. Implications of Theorem 2. In Sections 8 to 14 we applied Theorem 1
to prove theorems for the second order equation (2) and for equations
(36) and (50) containing a large and a small parameter respectively.
We can apply Theorem 2 in exactly the same way ; the process is essentially
trivial since our earlier bounds were obtained by studying the domains D,
and Dj;, which are the same as before. Hence the new theorems are obta-
ined from the old by deleting the forcing term and imposing the condition
(13); and in this condition there need be no uniformity with respect to
the parameter. We state the resulting theorems without further proof.

THEOREM 11. Suppose that f(z, @, 1) and g(x) are continuous and that
there are continuous functions hy (%, 2), f(x) and a constant b, such that

hy (@, &)+ f(2) = f(, &, 1) = f(2),
F(x)signe > by, >0 for x| >1,
g(x)signe > 0 for |z} > 1,

|F(2)| +G(x)—>00 as |x|—>o0,
where

F@) = [f(&dE, G@) = [ g(5ae.

Then there are constants B,, B, such that each solution of (11) satisfies
(1) < By,  [8(1)] < By

for all large enough positive t.
In Theorem 12 we shall write

Pz, k) = [ f(&, k)¢, G(z,k) = [ g(&, k)¢
0 0

and similarly in Theorem 13 with ¢ instead‘ of k.

THEOREM 12. Suppose that k> 1 and that f(z, 4,1, k) and g(z, k)
are continuous in x,%,t for each k. Suppose also that there are functions
fulz, £, k) and f(z, k), continuous in z, & for each k, and there are constants
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boyy boay Coo tndependent of &k such that

fulz, &, k)= f(z, 2,t, k) > f(z, k),
F(z, k)signe > by, >0  for |z| >
g(z, k)signe >0 for |z| > 1,
- |F(z, k)| < byy for 2] <1,
g(2, k)| < ¢ for |z] <1,
|F(z, k)| —>oc0  uniformly in k as |x|—oo.

Then there are constants By,, By, independent of k such that each solu-
tion of
e+ kf(z,z,t, k) e+g(x, k) =0
satisfies
|2(t)] < By,  |@(1)] < kB,
for all large enough positive t.

THEOREM 13. Suppose that 0 < ¢ < 1 and that f(xz, x,t, &) and g(z, &)
are continuous in x, &, t for each ¢. Suppose that there are functions fy, (x, &, €)

and f(x, €) continuous in x, & for each ¢, and there are constants b,,, b5, ¢,
independent of ¢ such that

Tulz, @, €) = f(z, £, 1, &) > f(z, ¢),
F(z, e)signx > b, > 0 for x| =1,
g(z,e)signe >0  for || =1,
|F(z, )| < by for 2| <1,
lg(®, €)| <0 for 2] <1
G(z, e)—>o00  umiformly in e as |m|—>oo.

Then there are constants B,;, B, independent of ¢ such that each solu-
tion of
E+ef(x, @,t, e)c+g(2,¢) =0
satisfies

lo(8) < By,  1#(t) < By,

Jor all large enough positive 1.

18. The nested domains for Theorem 4. For the rest of this paper,
we abandon the notations of Sections 2 to 17 but retain those of Section 1.
Theorem 4 is an obvious consequence of the following theorem, which
is also essential for the application of Brouwer’s fixed point theorem in
order to show the existence of a periodic solution of (19) when h(x, z, t)
and g(x, t) are periodie.
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THEOREM 14. Suppose that the conditions of Theorem 4 hold, and let
z(l), y(t) be as in Theorem 4. Then there is a sequence of domains D,
c D, € D, < ... such that each D, i3 bounded by a Jordan curve J, and the
union of the D, is the entire (x, y)-plane. If the point (zy, y,) is in D, , — D,
then (x(t), y () 38 in Dy, for all t > t,; as t increases, ((t), y(t)) crosses J,
tnto D, and thereafter remains in D,. Moreover, there is a ty3(n) depending
on n but not on x,, y, such that (z(t), y (1)) is in D, for t > 14+ t;5(n).

CorROLLARY 1. Theorem 4 holds.

COROLLARY 2. Under the conditions of Theorem 4, each solution of (19)
lies in D, from a certain time onwards.

COROLLARY 3. Suppose that the conditions of Theorem 4 hold and that
g(xz,t) and h(x,x,1t) are periodic in t with period 2w|w independent of =
and &. Then there is a solution of (19) which is periodic with period 2= |w,
and it lies entirely in D,.

Tt is easy to see that the Corollaries follow from the Theorem together
with Brouwer’s fixed point theorem in the case of Corollary 3 and the
fact that the domains D, defined below do not depend on k(z, Z,t) in
the case of Corollary 1. In the next two sections, which conclude this
paper, we prove Theorem 14.

19. The construction of J, for Theorem 14. In what follows we shall
write

G (x) = [ g,(&)signédé  for v =1,2
0

and we shall define a constant ¢, such that
(65) |F(z)i<e, for |z|<1,

which is possible by continuity. Let I' denote the curve y = F(z), 80
that # > 0 above I' and @ < 0 below I'. For any C > 2G,(1) the point set

(66) A (C) = {(#, 9); (y —b)* = C—2G,(x),x>1,y > b}

is a finite or infinite Jordan arc, and through any point (1, ¥) with ¥ > &
there passes just one such are. In virtue of (23), the argument of Section 4
shows that &/ (C) crosses I', perhaps more than once, provided Y >
max (F(1), b). For any such Y, we define z(¥) > 1 to be the least value
of x such that (a:, F(x)) lies on the Jordan arc (C) through (1, Y).
Similarly for any C > 2@G,(1) the point set

€(C) = {(=,y); (y—b)? =C—26G,(), s >1,y < b}

is a finite or infinite Jordan arc, and through any point (1, Y) with Y < b
there passes just one such arc, which lies entirely below I” by (21).

4 — Annales Polonici Mathematici XXIX.3
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Let b, ¢,, ¢, be the constants in (21), (65) and (20), and let
Y, =c¢+2¢b7 ' +(n+1)b, X, =2(Y,)
‘with z(Y) as above; this is legitimate since Y, > ¢, > F(1) by (65). Let
P,=(-1,Y,—b), @, =@,Y), T,=(@,2—7Y,);

let /(C,) be the arc (66) through @, and let R, = (X,, F(X,)) be the
point of &/ (C,) at which z = X,. Let o, be the subarc of «#(C,) from
Q. to R,.

LeMMA 4. Under the conditions of Theorem 4, the arc ¥(C) through T,
meets the line ¢ = X, at a point S, say.

By the definition of X, we have
(67) (Y, —0)2+26G4(1) = (F(X,)—b)2+2G,(X,).

The condition that the arc ¢(C) through T, should meet the line
z =X, 18

(¥n _"'b)2+2G1(1) > 264(X,),

and this is satisfied in virtue of (24) and (67); indeed it is for this lemma
that condition (24) is included in the statement of the theorem.

Now let %, be the sub-arc of ¥(C) from S, to T,. Also let P,
=1,b—-Y,) = ,,H, let Q, =(—1, —Y,) and let T, = (—1, ¥,—2b)
= P,_,; and let R, 8,, o, %, be obtained from @, and T, in the same
way that R,, S,, «#,, ¢, are obtained from @, and T,. The curve J,
consists of the straight line joining P, to @,, the arc <, joining @, to R,,
the vertical line # = X, from R, to §,, the arc ¢, from 8, to T,, the
vertical line # = 1 from 7T, to P, and the corresponding arc P, Q, R, S, T, P,;
one again Fig. 1 gives a clear enough picture of the situation.

It is easy to verify that J, is a simple continuous closed curve, and
that if D, is its interior than D, < 1)1 < D, c ... and the union of the D,
is the entire (z, y)-plane.

20. Proof of Theorem 14. To prove Theorem 14 it is enough to show
that no trajectory of (19) can cross J, outwards, that so long as a tra-
jectory remains outside D, it spirals clockwise round D,, and that a trajec-
tory can only remain in D,, +1— D, for a bounded time.

On or above P,Q, in |r|<1 we have & =y—F(x) > 2¢,b™' > 0
and y < —g(w,t) < ¢y; 80 a trajectory in this region moves to the right
and either moves downwards or moves upwards with slope less than }b.
Since the slope of P,Q, is b, 2 trajectory which crosses P,Q, can only
cross it downwards into D,, and a trajectory can spend a time at most
be;! in x| <1 above P,Q,. '
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&, is above I' and therefore £ > 0 on «,; thus on <,
d . .
77 (W =0 +26, (@)} = —22(y —b)h(z, 2, 1)+

+2(y—b)(g2(@) —g(, 1))+ 2(b— F(a)) g (2) < 0

so that a trajectory which crosses «/, can only cross it into D, . Similarly
%, is below I' and indeed below y = b, and therefore 2 << 0 on %,; thus
on %,

O (b7 +26,@)) = 2y —b)h(a, 3, )+

+2(y —b)(g1(2) — g(, 1)) — 2 (F (2) —b) g1 (x) < O

so that a trajectory which crosses &, can only cross it into D,. Again
the arcs R, S, and T, P, are vertical and lie below I', so that a trajectory
which crosses either of them has # < 0 at the point of crossing and so
crosses to the left, into D,. These arguments, and the corresponding
ones for the symmetrically placed arcs of J,, show that a trajectory which
crosses J, crosses it into D,,.

As in Sections 6 and 16, it only remains to show that a trajectory
can only stay in D, ;N{z > 1} for a bounded time and that in-leaving
this region it enters D, if it has not done so already. The proof of this
is the same as the proof of the corresponding statement in Section 186,
with g,(z) in place of g(x); and this completes the proof of Theorem 14.
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