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1. Introduction. Let X, Y be two polynomials in (x, y)e R? with real
coefficients, relatively prime, one of which has degree =n and the other has
degree <n.

A singular point S of the differential system

(1.1) x=X(x,y), y=Yx,y)

(x = dx/dt, y =dy/dt) is a center if there is a neighbourhood of S entirely
covered by cycles surrounding S.

When n > | there are different types of centers.

In the quadratic case (n = 2), a complete classification is known (cf. Conti
[1], Frommer [4]).

The aim of this paper is to contribute to the classification of centers in the
cubic case (n = 3), which is still far from being satisfactory.

2. Types of centers. Let S be a center of (1.1) and let G be the family of
cycles surrounding S and no other singular point. Let us denote by inty the
region interior to a cycle ye G, by Ng the region defined by

Ng = Jinty
yeG
and by 0N the boundary of Ng.

0Ny is an invariant set and we can divide centers of (1.1) into four types as
follows: S is of type A when éNg = O, of type B when ONg # & does not
contain singular points, of type C when @N is unbounded and contains at least
one singular point, of type D when ONg is bounded.

We shall now examine the four types separately.

3. Centers of type A. In the linear case (n = 1), a center can only be of type
A. Further, all solutions t — x(t), t— y(t) of (1.1) are periodic with the same
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period, ie., the center is isochronous.

For n =2, centers of type A cannot exist (cf. [1]).

For n =3, centers of type A do exist, but they are not necessarily
isochronous. For instance, 0 = (0, 0) is a center of type A for the two systems

x=—y+x* y=x—-2xy+2x°

and

. 3 ¢ __ 3.
X—_y, y_xs

it is i1sochronous for the first system and non-isochronous for the second.

4. Centers of type B. From now on we assume 0N # Q.

It can be shown (cf. Conti [2]) that for system (1.1) of arbitrary degree n,
the number of connected components of ¢Ng is < n+1 and that if dNg is
unbounded then each connected component is unbounded.

Therefore, for a center S of type B, ONg is the union of k< n+1
unbounded trajectories, each dividing the plane into two unbounded regions,
one of which contains N

We will say that a center S of type B is of subtype B* if N contains
k connected components.

For n =2 only subtype B! is possible (cf. [1], [4]).

For n =3 subtypes B! and B? are possible, as the following examples
show.

ExXAMPLE 4.1. The system
x=2y—x% p=-—2x—2xy+x’
has a center of subtype B! at 0. The trajectories are
Qy—x*+Dexp(—2y—xH) =c
and N, is the region interior to the parabola 2y—x*+1 = 0.
ExaMPLE 4.2. The system
x=y—x%y, yp=-—x—xp°

has a center of subtype B? at 0. The trajectories are the conics
x*+(1—=r*)y? =r? and N, is the open strip x* < 1.

QuEsTioN 4.1. Do centers of subtypes B3, B* exist?
yp

5. Centers of type C. The positive (negative) limit set of an open trajectory
y < ONg, if it is not empty, reduces to a singular point XedNg and
y approaches X for t - + oo (for t - — o0) along a certain direction (cf. [2]).
Let us now introduce some terminology.
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An open trajectory y < 0Ny is totally unbounded if both its limit sets are
empty, partially unbounded if exactly one limit set is empty, homoclinic if the
two limit sets coincide, heteroclinic if the two limit sets are distinct.

A loop 1s a simple closed curve consisting of a homoclinic trajectory and its
limit point.

A chain, or k-chain, is a simple closed curve consisting of k > 2 singular
points X,,...,%, and k heteroclinic trajectories y,,..., 7, joining X, to
X, .2, to X,

Loops and chains are also generically called separatrix cycles. If a separat-
rix cycle is contained in dNy, it can be given the same orientation as the cycles
of Ng.

A train is what remains by suppressing an open trajectory from a chain.

It can be shown (cf. [2]) that an unbounded connected component of INg
is either totally unbounded or it must contain two partially unbounded orbits
and it may contain also separatrix cycles and trains.

Centers of type C can be divided into subtypes C% ., where k denotes the
number of connected components of N, o the number of singular points and
@ the number of open trajectories.

For n = 2, a center of type C can only be of subtype C} , (cf. [1], [4]).

For n =3, the following examples show the existence of centers of
subtypes C! ., CZ,.

ExaMPLE 5.1. The trajectories of the system

= =2y, y=3x+6x*—3y*+3x’

are [y?—(x+1)*]exp(—3x) = c. The singular points are (—1, 0), a non-elemen-
tary one, and 0, a center of subtype C},. 0N, is the cubic y? = (x+1)>.

ExXAMPLE 5.2. The trajectories of the system
% =2xy, p=1—-x—y>+xy?

are x(y?—1)exp(—x) =c. The singular points are the two saddles (0, 1),
(0, —1) and a center of subtype C3;, at S=(1, 0). N is the half-strip
x>0, y? < 1.

EXAMPLE 5.3. The system
x=—y+xly, y=x—x>+xy’

has a non-elementary singular point at (1, 0) and a center of subtype C? , at 0.
N, is the strip x?> < 1. The cycles are represented by (1—x)(1+x)"!
exp[2(y —x+1)/(x2=1)] =c = 0.

ExaMPLE 5.4. The system

x=y—x¥y, p=-—x+x>—xy
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has a center of subtype C%, at 0 and two non-elementary singular points at
(—1,0), (1, 0). The trajectories are represented by (1—x?) exp[—y*/(1 —x3)] = ¢
and N, is the strip x? < 1.

Several questions about centers of type C of cubic systems remain open.

QuesTION 5.1. Do centers of subtype C3, exist with the two singular
points on the same connected component?

QUESTION 5.2. Do centers of subtypes C2,, C%. exist?
QUESTION 5.3. Do centers of type C with g > 2 exist?

QUESTION 5.4. Do centers of type C exist with N containing a separatrix
cycle?

6. Centers of type D. It can be shown (cf. [2]) that when dN is bounded
then either it i1s a separatrix cycle or a connected set consisting of an outer
separatrix cycle I" and one or more separatrix cycles, mutually exterior, with no
more than one singular point in common with I

A center of type D is said to belong to subtype D, , if ONg contains
o singular points and @ open trajectories.

For n =2, 0Ny is a loop, a 2-chain or a 3-chain, so that the subtypes
reduce to D, D;,, Di; (cf [1], [4]).

For n = 3, the range of subtypes D, , is wider and not completely known
yet.

We shall give a few examples, as usual, and pose some questions.
ExaMPLE 6.1. The system
x==2y=2xy+x3y+y>, y=3x2+y*—x>—xy?

has a center at S = (3, 0) and a non-elementary singular point at 0. The
trajectories are the quartics (x* + y?)*> —4x(x*+ y*)—4y* = c and Ny is a loop
corresponding to ¢ = 0.

EXAMPLE 6.2. The quartics (y + 1+ x%)(y — 1 +2x?) = c are the trajectories of
x=2y+3x*, y=—2x—6xy—8x’.

0 1s a center and N, a 2-chain, corresponding to ¢ =0, which contains the two
saddles (—./2, —3), (/2. —3).

ExAMPLE 6.3. The system
X =9+ 12xy+xty+y}, y= —9x+6x2—6y>—x>—xy?

has four singular points, namely, the origin, which is a center, and (—3/2,
— 3\/5/2), (—3/2, 3\/5/2), (3, 0), which are non-elementary. The trajectories are
the quartics (x*+ y?)? +8x(3y*—x?)+18(x*+y?) = ¢, and N, is a 3-chain
corresponding to ¢ = 27.
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ExaMPLE 6.4. The system
X =y—-5x*y+4y*, J=—x—4x>+5xy?

has five singular points, namely, the origin, which is a center, and four saddles
at (—1, —1), (=1, 1), (1, 1), (I, —1). The trajectories are the quartics
(1—-2x2+y?) (1-2y*+x%) = ¢ and dN,, is a 4-chain, corresponding to ¢ = 0.

QUESTION 6.1. Can ¢Ng be a k-chain with k > 4?
ExampLE 6.5. The trajectories of
x=Ty—x*y—y', p=—6-Tx+x>+xy?

are the quartics (x2+y?)?>—14(x*+y?)—24x = ¢; the singular points are
a saddle at (—2, 0) and two centers at (—1, 0), of subtype D, ;, and at S = (3, 0),
of subtype D, ,. dNg is the union of two loops, corresponding to ¢ = 8.

Example 6.5 shows that dNg can be the union of an outer loop and an
inner loop. It 1s not difficult to show that, for a cubic system, N cannot be the
union of two chains or of an outer chain and an inner loop, or of an outer loop
and an inner k-chain, k > 2.

QUuEesTION 6.2. Can 0Ng be the union of an outer loop and an inner
2-chain?

7. Systems with more than one center. A quadratic system can have two
centers, both of type B or of type D, ;, or of type D, , (cf. [1], [4], Li [5]).

For n = 3, the number of possible combinations is much higher. Several
examples are available, but a complete classification would require the answers
to all Questions listed in the preceding sections.

So far, very little is known (cf. Ushkho [6], Conti [3]). Here we just limit
ourselves to an example and a further question.

ExAMPLE 7.1. The quartics (x2+2y?>—1)(2x?>+ y*>—1) = ¢ are the trajec-
tories of the system

X = =3y+5x%y+4y*, y=3x—4x>—5xy>.

The singular points are the four saddles (i\/§/3, + \/5/3) and the five centers,
all of type D, at 0, (+./3/2, 0), (0, +./3/2).

QuesTiON 7.1. Can a cubic system have more than five centers?
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