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Existence of a minimal solution and a maximal solution
of a nonlinear elliptic boundary value problem
of the fourth order

by JaN BocHENEK (Krakéow)

Franciszek Leja in memoriam

Abstract. This paper is devoted to the existence of a minimal solution and a maximal
solution of a class of nonlinear boundary value problems of the lourth order. The main results
of this paper are contained in Theorems | and 2. The method used in this paper is based on the
method of paper [5].

Introduction. In this paper we are concerned with the existence of a
minimal and a maximal solution of a class of nonlinear boundary value
problems of the fourth order. A minimal or maximal solution of a given
boundary value problem may be investigated in two aspects:

1° as a local extremal solution, i.e., a minimal or maximal solution in a
fixed domain (e.g., an interval) of a function space;

2° as a global extremal solution, i.e., a mimimal or maximal solution to
all solutions.

There are many articles which guarantee a minimal or maximal solution
in aspect 1° for boundary value problems of the second order (cf. [1], [2],
[4]). The problem of the existence of a minimal and a maximal solution in
sense 2° for nonlinear boundary value problems of second order is studied in
paper [5].

In this paper we shall consider the existence of a minimal and a
maximal solution of some class of nonlinear boundary value problems of the
fourth order in two above aspects.

Consider a nonlinear elliptic boundary value problem (BVP) of the form

(Lu)(x) =f(x, u(x)) for xeQ,
(Bu)(x) =0 for xe 09,
where L= Ly L,, B=(B,, B,) and f: QxR — R.

(1)
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We assume that Q = R is a nonempty bounded domain with boundary
of class C2** for some a€(0, 1), that the differential operators

N a2

2 Lo=-Y dy—b

—-~~+ . i=0,1
Jk=1 5x ax,( Z ak c ¢ !

uniformly elliptic on £ and that the coefficients af,, 4, c'e C*~%**(Q)
(i=0, 1) with ¢! (i =0, 1) are nonnegative. We also require that

3) Bo =byo+b i=0,1,

i 00
1 aﬂ’
where d/0f denotes the directional derivative with respect to an outward
pointing, nowhere tangent vector field f on 0Q of class C'*=

Furthermore we suppose that feC'(Q2 xR) and Bu =0 on JQ means
(Bou)(x) =0 and (B, Lou)(x) =0 for xe dQ2. A similar BVP was considered
by the author in [3].

1. Notation and preliminary results. In the sequel the following
hypothesis is important for our investigations:

HypotHesis H;. We assume that the coefficients in (3) satisfy the
following conditions: bp, b, e C'**(dQ), bh(x) =0, b\ (x) =0 and bj(x)+
+bi(x) >0 for xe Q2 (i =0, 1). Moreover, in the case of by = 0 on dQ for
i =0,1 (Neumann boundary condition) we suppose that ¢/ >0 in Q for
i=0,1.

Hypothesis H, ensures that the maximum principle is valid for (L;, B;)
on Q,i=0,1.

As an important consequence of H, we obtain the following lemmas:

LemMmA 1| ([2], Theorem 4.3). The eigenvalue problem (EVP)

4) Lu=iu inQ, Bu=0 on 09,

has the smallest eigenvalue A, >0 for i =0, 1.

Lemma 2 ([2], Theorem 4.4, and [5], Lemma 2). Let ve C*(Q). Then for
every qe R with q < A} the linear BVP

(5) (Li—qu=v in 2, Bu=0 on 02,

has exactly one solution u in C***(Q). Finally, v > O implies u > 0 for i = 0, 1.

In the sequel we denote by u = Kv the unique solution BVP(5) for
g=0and i=1. '

The Schauder a priori estimates imply that the operator K defined
above is a continuous linear operator from C*(Q) to C2**(©). This operator
K can be extended to a compact linear operator from C(Q2) to C!(Q).

We shall now prove the following
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LemMma 3. If the function fe C' (2 xR) and a < b are fixed numbers, then
there exists a number ¢ > 0 such that

(6)  Kf(x,u))+ou, <Kf(x,u)+ou;,; for all xeQ and a<u, <u, <b.
Proof. Since fe C'(Q x R), there exists an m > 0 such that
W) (0ffou)(x, u) > —m  for all xeQ and ue([a, b].
Let us take arbitrary u,, u, such that a < u; <u, <b. From (7) we get
f(x, u)—f(x, u;) < —m(u, —u;) for all xeQ.
From this by Lemma 2 follows
(8) K[f(x, u))—f(x, u)] <mK(u,—u,) for all xeQ.

Let ¢ > 0 be a number to be appropriately selected later. From (8) we get
K[f(x, u))—=f(x, up)]+o(u, —uy) < mK(u,—u,)—e(u,—u,) for xeQ.
Since the operator K is bounded and u, —u, = 0, then it is readily observed

that
mK(u;—u;)—o(u,—uy) <0 for u; <u, if o = m|Kj||.

Therefore, if we select ¢ = m||K||, then inequality (6) holds. The proof of
Lemma 3 is complete.

In the sequel by a solution of the BVP(1) we always mean a function
ue C***(Q) which satisfies (1) identically.

We shall say that a function @ is a lower solution of the BVP(1) if
PcC***(Q) and

(L?)(x) < f(x, @(x)) for xeQ,
(BP)(x) <0 for xe 0Q,

where (Bu)(x) <0 for xedQ means (B,u)(x) <0 and (B, Lou)(x) <0 for
x€ 0Q2. An upper solution ¥ of the BVP(1) is defined similarly but with the
inequality signs reversed.

2. Existence of local extremal solutions of the BVP(1). A solution u of the
BVP(1) is said to be a local minimal (or local maximal) solution in a domain
DcC***(Q) if ueD and for every solution u* of the BVP(1) in D the
inequality u < u* (respectively u* < u) is satisfied.

We shall prove the following

THEOREM 1. Let ¥ be an upper solution and @ a lower solution of the
BVP(1), with @ < ¥ on Q, such that (B®)(x) = (B¥)(x) = 0 for xe Q. Then
there exist a minimal solution u and a maximal solution v of the BVP(1) in the
interval [®, ¥] < C***(Q).

Proof. Choose a number ¢ such that inequality (6) holds where
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a=min {®(x): xeQ} and b = max |¥(x): xeQ}. Using the definition of the
operator K, we write the BVP(1) in the form

(Lou)(x) = Kf(x, u(x)) for xeQ.

)
(Bou)(x) =0 for xe (1.

Let us observe that each upper solution (lower solution) of the BVP(1)
satisfying (Bu)(x) = 0 for xe Q2 i1s an upper solution (lower solution) of the
BVP(9) satisfying (Byu)(x) = 0 for xe 0Q, but not conversely.

We define a nonlinear operator T by v = Tu if

(10) (Lo+to)v=Kf(x,u)+ou tn Q, Byo=0 on 09Q.

Since the function F defined by F(x, u) = Kf(x, u)+ ou is increasing in u by
choosing the number g, it is easy to show that the operator T is monotone,
te., if uy < u,, then Tu, < Tu, (see [4]).

Now we define two sequences,

ug=¢ and u,=Tu,-;, neN,
and
vo=Y¥ and v,=Tv,_;, neN.

Using the monotonicity of the operator T and the maximum principle
for (Ly, By) in 2, we can easily prove that

(1) P<uy; <u ... <y <Y

Moreover, the sequences (u,) and |v,} both converge uniformly in Q to the
functions u and v, respectively. The functions u and v belong to C***(Q) and
they are solutions of BVP(9) (see [4]). Since each solution of BVP(9)
belonging to C***(Q) is a solution of BVP(1) and vice versa, then the
functions ¥ and v defined above are solutions of BVP(1).

We shall prove that u is the minimal solution and v is the maximal
solution of BVP(1) in the interval [®, ¥]. Indeed, let u* be a solution of
BVP(1) such that @ < u* < V. So, u* is a solution of BVP(9). We shall prove
that u <u*. The proof of the inequality u* <v is quite similar. By
assumption we have @ = u, < u*. Let us suppose u,_, < u*. Since

(L0+Q)un = Kf(x’ un— l)+Qun—1 in Qa

(Lo +o)u* = Kf(x, u*)+ou* in Q,
and
Bou"=Bou* =0 on aQ,
we have
(Lo+0)(u,—u*) = K[f (x, uy_1)—f (x, u*)]+o(u,-, —u*) in Q
and

B, (1, —u*) =;0 on 0Q.
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Hence by (6) (where ¢ = min® and b = max ¥ on Q) and by the maximum
principle we have u, < u*. From this by induction we get u, < u* for each
ne N. Therefore limu, = u < u*.

3. Existence of global extremal solutions of the BVP(1). In this section we
shall need the following

HypoThesis H, (see [5]). 3p, se R with p < AJ4i) and s > 0: Va, feR
with a < B, VxeQ: f(x, B)—f(x, a) < p(B—a)+s.

LeMMa 4. If the operator K is defined as in Section 2 and pe R with
u < Ay, then
(12) VoeC*(Q): v>0, v—uKv>=0.

Proof. Suppose that there exists a v, > 0 such that vo—uKvy < 0. Let
Kv, = uy,. We have, by Lemma 2, u, > 0. By the definition of the operator K
we get

vo=Ljuy and Byuy,=0,
and so
(Ly—mug <0 and Bjug=0.

From this, by Lemma 2, we get uy <0, which contradicts ug > 0.

After these preparations we shall prove the following

THEOREM 2. Suppose that the BVP(1) satisfies hypotheses H, and H,.
Then the BVP(1) possesses a minimal solution u and a maximal solution i with

respect to the whole space C***(Q) (i.e., BVP(1) possesses global extremal
solutions u and u).

Proof. First we construct a lower solution @ and an upper solution ¥
with @ < ¥ for the BVP(9) by solving two linear BVP’s of form (5) for i = 0.
For arbitrary e C?**(Q) we define @ = ®(i)e C***(Q) by

(Lo—q)(@—®) =(Loa—Kf (x, #))" +Ks in Q,
By(i—®) = (B, ii)* on o9,

and ¥ = ¥()e C?**(Q) by

(Lo—q)(¥—i) =(—Loii+Kf (x, @) +Ks in Q,
Bo(¥ —i)) =(—Bya)* on 0Q,

where ge R and p/A) < g < 43, and p is from H,. From Lemma 2 it follows
that these definitions are correct and that @ (i) < it < ¥Y(#) is true. We shall
prove that @ (%) is a lower solution and ¥ (i) is an upper solution of BVP(9).
Hypothesis H, implies that

f(x,d)—f(x, )< p(d—P)+s for xeQ

(13)

(14)

and
f(x, ¥)—f(x,a) <p(¥-t)+s for xeQ.
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It follows that
—Lo®+Kf(x, ®) = Loit— Kf (x, t)— Lo @+ Kf (x, ®)—(Loti— Kf (x, &))"
2 (Lo—g)(@—®)—(Loii— Kf (x, @)* — Ks+(g— pK}i— @)
=(q-pK)u—®)>20 in Q
and
By® = Bou—(Bou)' <0 on 0Q.
Analogously, we prove that
LoW>2Kf(x,¥) inQ By¥#=0 on Q.

By Theorem 2.3.1 of [4] the BVP(9) possesses a solution u*e[®, ¥].

We now prove that every solution u of BVP(9) lies in the interval
[®(u*), ¥ (u*)]. Indeed, let ve C*>**(22) be an arbitrary solution of (9). Then
we shall show that ve[®(u*), ¥ (u*)]. First we define an operator

A: CEr(Q)—=C*(Q) by Au=(Lo—q)u,
where
C3**(Q):= lueC***(Q): Bou=0.

Lemma 2 implies that A~! exists and is positive (ie, A" 'w >0 if w> 0).
We define

wi=v—A '[A(v—u*)]" — A ' Ks,
wy=u*+A"'"[Av—u*)]* + A ' Ks.

From this and from the inequality v—u* < A" '[A(v—u*)]" it follows that
v, u*e[w,, w,].

That w, is a lower solution of BVP(9) follows from
—Low, +Kf (x, wy) = Lov—Kf (x, v} — Lgw, + Kf (x, w,)
= (Lo—q)(v—w;)+(q—pK)(v—w;)— Ks
> A(v—w)—Ks=[A(v—u*)]* >0 in Q.
Analogously, we prove that
Low, 2 Kf (x, wy)  in Q.

Since Bow, = Bow, = 0 on 02, it follows that w, is a lower solution and w,
is an upper solution of BVP(9).

Theorem 1 implies that there exist solutions u, and v, with u, < u*,
u, <v and v, > u* v, > v. Moreover,

0=A "[Lou*—Kf(x, u*)—Lou, +Kf (x, u;)] > A" " A@u*—u,)— A" ' Ks,
0=A""[Lov, —Kf(x, v;)—Lou*+Kf(x, u*)] > A~ ' A(v, —u*)— A~ ' Ks.
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Let us observe that if ue C2**(Q) is a solution of BVP(9), then the lower
solution @(u) and the upper solution ¥(u) defined by (13) and (14),
respectively, satisfy the inequalities

Puy<u—-A'Ks and Y(w)=u—A 'Ks.
Hence, we finally get
Pu)<u*—AT'Ks<u; v <v; Su*+ A7 Ks < P(u*).

This inequality implies that every solution v of BVP(9) belongs to the
interval [@ (u*), ¥ (u*)]. In this case the minimal solution u and the maximal
solution # in [@(u*), ¥ (u*)], which exist by Theorem 1, are, respectively, the
minimal and the maximal solutions with respect to the whole space C?**(Q).

Theorem 1 implies that the minimal solution ¥ and the maximal
solution & of the BVP(9) belong to the space C***(Q2) and are solutions of
the BVP(1). It 1s easy to see that u is the minimal solution and # is the
maximal solution of the BVP(1) with respect to the whole space C***(Q).
The proof of Theorem 2 is complete.

Remark 1. The proof of Theorem 2 is based on the proof of the
analogous Theorem 1 from paper [5], concerning the BVP of the second
order.

Also the next theorem generalizes an analogous theorem for the BVP of
the second order (see [5], Theorem 2).

Let us denote by BVP(1,) (i =1, 2) a boundary value problem of the
form

(Lu)(x) = fi(x, u(x)) for xe®Q,

(Bu)(x) =0 for xe Q.

THEOREM 3. Suppose that the BVP’s (1,) and (1,) satisfy Hypothesis H;,.
We denote by u; and u; respectively, the minimal and the maximal solutions of
the BVP(1,) if Hypothesis H, is satisfied for i =1 or i = 2. If H, is satisfied for
the BVP(1,) and

(15) VxeQ Ywe C**(Q) f; (x, w) < f(x, w),

then u, < u for all solutions u of the BVP(1,).

If H, is satisfied for the BVP(1,) and (15) holds, then u < i, for all
solutions u of the BVP(1,).

Proof. We only consider the case where H, is satisfied for the BVP(1,).
The case where H, is satisfied for the BVP(1.) is analogous. Let u be an
arbitrary solution of the BVP(1,). Then u is a solution of the BVP(9,). We
construct a lower solution @ and an upper solution ¥ for the BVP(9,) as in
the proof of Theorem 2 with #:=u. We have @ < u < ¥. Since

Lou—Kf;(x,u) 2 Lou—Kf;(x,u) =0 in Q

(ll)
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and
Bou =0 on GQ,

u is an upper solution of BVP(9,). Then it follows from Theorem 2.3.1 of [4]
that there is a solution u* of BVP(9,) in [®, u]. Since u* is also solution of
the BVP(1,), we obtain u;, < u* < u. This yields Theorem 3.
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