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A contribution to the connection of V. Hlavaty

by A. SzyYBIAK (Rzeszéw)

Abstract. For a given differentiable manifold A we construct some bundles, e.g.
bundles of pseudoscalars, pseudovectors, pseudotensors, etc. We define an angular
‘Weyl metric to be a certain field of pseudotensors. Then we define a Hlavaty connec-
tion which is consistent with this angular metric just like a Levi—Civita connection
is consistent with a Riemannian mefric. Further we introduce a pseudotensor of
curvatures and a pseudoscalar curvature which indicate analogies with the cor-
responding notions of the Riemannian geometry. More anslogies are obtained by in-
vestigations of submanifolds in conformal spaces. In final remarks therc is given
a criticism of the fraditional approach to fundamental notions related to Weyl strue-
tures.

In this note we present an intrinsic approach to the fundamental
notions related to Weyl structures on manifolds [11]. Connections in-
troduced by V. Hlavaty [5], [6] are consequently treated as a special
case of the clagsical infinitesimal connections [8]. Further we indicate
some analogies to the differential geometry of surfaces in Hueclidean
spaces.

We shall use the following notations:

R is the additive group of reals,

R is the vector space of reals (thus R is the Lie algebra of R),

R, ,, is the ring of all matrices of the form [agJpcnicns -

R" and R" are respectlvely the Cartesian products of # copies of
the structures indicated above,

GL(R™ is the real linear group of dimension m,

GL(R"™ is the Lie algebra of GL(R").

We respect the Einstein convention on summation.

We take into considerations the direct group product R xXGL(R").
We define two left actions, 1 and 4, as follows:

(1)  A: (R x@L(E")xE" - R",
(@t [47]), [v*]) > ['4f27];
(2) A: (R XGL(.R"')) X-Rn,n - -Rn,m
(@, [47D), [aga)) — [6¥4}47a,].
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Let 1 be a differentiable munifold of dimension 5, % > 2. Let L (M)
denote a bundle of linear frames over 3. We denote by W(A[) a new
bundle which is obtained from L(M) by producting each fibre by R.
Thus W (M) is a principal bundle over M and the direct produet R X GL(R"™)
considered above is a structure group of W(M). The corresponding cano-
nical right action will be noted simply by a dot. In order to define a Weyl
structure on the whole of M we have to define fields of pseudovectors
and of some pseudotensors. For this purpose we consider the products
W(M)xR" and W(M)xR, , and two relations (equivalences), o and
g, on these products. We set

(s, 7), ») o((5, 7), D) <> there exists (i, 4)eR XAL(R") such that § =
=¢84t F=r-A and 7 = A(—t, A7 v),

((8, ), a) 05((S, 7), @) <> there exists (f, 4)eR xGL(R") such that s
=g+t F=r-4 and @ = A(—1, A7 -a).

Thus the quotient manifolds W (M) xXR"/e and W (M) xR"/e, have
natural structures of fibre bundles which are associated with W (I).
We denote these bundles by Y (M) and by ¥,(M), respectively.

DEFINITION 1. Any cross-section M—Y (M) will be called a field
of pseudovectors. Any cross-section M—Y, (M) will be called a pseudo-
tensor of type 0/2. (We do not specificate weights of the quantities in
question because we shall make use of those which are just defined.)

Remark. Mr. O. Kowalski in Praha has kindly informed me that
there exist isomortfisms of ¥ (3) onto the common tangent bundle 7'(M)
over m. On the other hand there exists no “natural” way to check and
fix such an isomorfism. If j; and j, are two such isomorfisms from Y (M)
onto T(M), then j,0j;* is an automorfism of 7'(M), namely, there exists
o scalar field s such that j,04;'(v) = sv holds for any cross-section v» of
T(M). Pscudotensors may be considered analogously.

ProrogITION 1. If there is given a field of pseudotensor, b, then there
is defined am associated bilinear mapping Y (M)x ¥ (M)—>R. We shall
denote this mapping by the same symbol b.

Proof. We present this mapping in local coordinates. Given any
coordinate neighbourhood, #, we fix some field of linear frames on %.
Then we complete this field of frames to a cross-section #—>W (M) by

prefizxing any differentiable function, i.c. a cross-section # U X R. If a
1

and a are two pseudovector fields, we can relate their restrictions a|%
2 1

o
Il

and a|% to those frames. If [a'], [a’] and [b,] arc the corresponding
2 2 2

matrices of coordinates, then the value
(3) b(a,a)|%: = byd'a’
1 2 12
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is invariant under the action of the structure group. This follows imme-
diately from (1) and (2).
Remark. Formula (3) may be applied in the case when [af]
1
and [a*] are matrices of coordinates of some vectors. In this case the

2
result is not a scalar field but it is some object which transforms under
a change of coordinates as follows

(4) b(a, a) — ¢*b(a, a). .
1 2 1 2

DuFINITION 2. A field of pseudotensors of type 0/2 will be called
a Weylian metric if for each pair (4, a) of pseudovectors there holds
1 2

(i) g(a; a) = 0 except the case a = 0,
1 1 1

(i) g(a, a) = g(a, a).
1 2 21

ProPoSITION 2. If there is given a Weylian meiric on the maﬁifold M,
then there is well defined an angular metric. Namely we may assume

cos (v, w) = g(v, 'w)/l/g('”: ) g (w, w)

for arbitrary vectors v and w.

We pass to connections in W (M). We follow the fundamental notions
of [8]. We have to deal with holonomic fields of frames. Let (%, x) be
a local chart on M, i.e. % is open in M and x: #—R". Then an associated
holonomic. field of frames on % is a tuple [, ..., ®,] of vector fields
on %, x;(p) being a vector which sends any differentiable scalar function
o to (0;002 ow(p). (Using the traditional notation we should write
(8 /0a7) lz(p) Instead of a;(p).) Then we complete this field of linear frames
to a local frame field in W (M) by prefixing a differentiable scalar function
0: %#—R. In such a way we obtain a local field of completed frames

p=[8(p), 2,(D); ..., 2o (p)].

If there is given a connection ¢ in W (M), then the operator of co-
variant differentiation VC is determined uniquely, ¢f. [1], [10]. The com-
ponents I' of C which are associated with the above local field of frames
may be found from the following decompositions:

'7? 0 = F i)
(5)
Vio X, = I i,_b'i Zy,.
Thus F¢0 is different from 0,(foz~') in general.

The following proposition follows directly from the general connection

theory as well as from formula (5), ' '
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ProposrrioN 3. Suppose that we have another field of frames on %,
say [6, @y, ..., ®,], which is related with the previous one by the formulas

6(p). = 6(p)+1(p),
x;(p) = Ai{=(p)) 2; (p),

where (t, [A1]) is some mapping from R X% to R XGL(R™). Then the asso-
ciated components of the commection C are transformed as follows:

(6) Ty = A3(Ih+0ut),

[I},] are transformed according to the rule of transformation of
the object of linear connection.

The general theory of covariant differentiation yields directly the
following propositions:

PrOPOSITION 4, A local empression for the covariamt derivatives of
a pseudovector field a is

V? k- a,-afk—Piak—{—P,’-fjad

ProrosITION b. The local expressions for the covariant derivative of
any field b of pseudovector of type 02 is

7S by = 0;0us + 2 s bap,— T bis, —~ T by

DErINrrioN 3. If » is a vector field, then we denote by FSa and,
respectively, by PJb, the corresponding directional covariant derivatives.

ProPoOSITION 6. VSa is a pseudovector fwld and Vb is a pseudo-
tensor field of the same type.

We distinguish some connections ‘which were been introduced by
V. Hlavaty [6]. From now on we assume that there is given a pseudo-
tensor g, which defines a Weylian metric on M. Then we assume the
following |

DEFINITION 4. A Hlavaty connection is an infinitesimal connectidn,
D, in W(M) which satisfies the following axioms:
(i) the identity

0,9(a, o) —y(VDa, a)+-g(a, V34)
holds for any vector field » and any pseudovectors a, a;
1 2

(ii) for each local holonomic field of frames x we have

Vaa = Vo
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TaeoreM 1. If a Weyl structure (M, g) <s given, then there ewisis
a bundle of Hlavaly conmections in W (M). The. dimension of this bundle
is n = dim M. (Cf. [9].) '

Proof. Propositions 4, 5 and axioms (i), (ii) of Definition 4 imply
the following relations between the holonomie components of the con-
nections in question:

(7) It = {E}+ Lo+ I 8k — g¥ T gy,

where {...} are Christoffel symbols related to the local components of g.
Thus we have to choose n functions I3, ..., I}, which are local compo-
nents of some form y. Thus 4 is this part of the connection form, which
is projected into R in the decomposition: Lie algebra of R xGL(R")
= R@®GL(E") (the direct sum). Since I'; may be chosen arbitrarily, the
theorem is proved.

COROLLARY. Theré emists emactly .one Hlavatyj commection, Dg, such
that VPos = O identically. F denotes here the fumction which is equal to 1
identically on M,

We are now going to investigate the curvature of a Hlavaty conneec-
tion. We decompose the connection form, w, into components:

(8) 0 =18y +Ii@af,

where I is the unit veector in R and I} are components of the natural
frame in the Lie algebra GL(R"). Denoting the curvature form by £
we have

Q = I®dy+12(aw+w;‘/\mi).

The local representation of dy is the following: If we write y = I;da’, then
we have

(9) dy = (0, T;— 8, T}) do ndr!.

We take into consideration a Weylian object of curvature of the
connection D, namely we put

(10) H, o = (Vo Vo —Vio Vi —Viu)a,

v and w being arbifrary vector fields and a being an arbitraray pseudo-
vector. [ ; ]is here the Poisson bracket. In order to find local expressions
for H we take a local field of holonomic frames, [6, x,, ..., ®,] and we
put H, . o= Hyfd'. An elementary computation yields the following
formulas:

(11)  Hy'=0Th— 0 T+ Tai—Tg T — (0,5 — 9, 1) &,
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(Cf. [3], XXX, 8. 7.) We notice that the right-hand member is like a Rie-
mannian curvature tensor minus some quantity obtained from dy. It
follows from Proposition 6, that H, ,a is a pseudovector. Hence H itself
is a tensor field. The right-hand member of (11) is composed of a coeffi-
cient of the Riemannian curvature tensor and of the coefficients of (9).
We perform the contraction of the tensor H with respect to indices %
and i. We obtain

(12) H; = 0, TE— 0+ I, I — 111"/; —(0,1;—0,17).

The tensor K with components Kj;: = Hm" may be defined also in-an
intrinsic way as a mapping (w, a)=>K,a, where

(13) K, = (trace of the mapping v—H, ,a).

The value of K,a is a pseudovector field.

Now we have to give an intrinsic definition of some geometric object
which is the analogue of the Gaussian curvature. For this purpose we define
the bundle Y*(M) as follows: We introduce a transformation rule (i.e.
a group action) by: '

A (R X GL(L ")) x R"+R",
((t: [-A-j] ) [ui])H[etAjui]'

Then we consider the following equivalence ¢* on W (M) x R*:
(s, 7), u)e*((5, 7), @) iff there exists (¢, A)eR x GL(R"™) such that § = s+,
F=r-4 and w = A*(t, 4, u).

Then the quotient ma.mfolc'l W(M) X R"/g* is 2 bundle over M. We
denote this bundle by Y*(M).

We define yet another bundle. We take the following transforina-
tion rule:

p: (R X GL(R") x R—R,
(2, [47]), e)>ee.

(We observe that the GL(R“)-coﬁlponent acts here trivially.) Then we
consider the equivalence ¢ in R X GL(R") X R which is defined as follows

((sy7), ¢)o((5, ), T) iff thcre exists some (t A)eR x GL(R") such that
s—s—l—t F=r-4 and ¢ = e te.

The quotient manifold W(M)x R/o is a bundle Y,(M) over M.

DEFINITION 5. A cross-section M—Y,(M) will be called a field of
pscudocovectors, Any cross-section M—Y (M) will be called a field of
pseudoscalars,
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PROPOSITION 7. Each field of pseudovectors is a mapping of pseudo-
veclors into the scalars. The local expression of this mapping iz ([u.], [v*])
1
=1

Prorosition 8. A Weyl melric g establishes an isomorphism of the
algebra of wvector fields on to that of coveclor fields. The corresponding map-
ping s

g v:=g(v, —).

In view of Definitio . 2 (i) there exists a mupping reciprocal to g°

which will be denoted by ¢ . We have in local coordinates
g [a*l-[gy0'],
g9 : [6:]=[" o).

Consider the field of pseudoscalars

(14) g: = (detg )™

PROPOSITION 9. g establishes a one-to-one mapping of veclor fields
to pseudovector fields. If wis a vector, then w|g is a pseudovector. If w is
a covector, then gg o is a pseudovecior.

Thus the mapping
K : (éoveetor fields)—>(covector fields),
is well defined and linear.

DErinITION 6. We define the pseudoscalar curvature of a Hlavaty
connection to be the following field

1 -~
k: = ——trace(K ).
n—y race(f )
Thus we have, in local coordinates,
(15) = —-—ng"ﬂ
n_l g

We supply some considerations on the Weyl geometry of surfaces
in the conformal space: We denote by Co(R") a group of conformal trans-
formations of R" including translations. We denote by C", where # > 3,
the #-dimensional conformal space, which is viewed upon as a Klein
space (B, Co(R"). Keeping in mind the previous notations we consider
the trivial bundle W(0") = C"* xCo(R") and the global cross-section

8y O"=W(C™),
x—unity of Co(K").
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Thus C" is provided with a standard Weyl metrie, @, which has a matrix
of components at s, equal to [§;]. In order to check some Hlavaty connec-
tion in W (C™) it is sufficient to define n functions I, ..., I, on. C*, Thus
Theorem 1 yields the formulas for computing the remaining components
of a connection. We have at s,

Iy = Liof+ I — TT' 8y,

where I'*: = §**I',. Then we have for any field ¢ of psendotensors
V¢a* = 9,a*+ INa* 6%, — I.a*

Now we compute the corresponding curvature tensor H. We have

(16) Hy* = 0, Iy6f— 0,105 +0,1% 6~ 0, I, 6 +
+ Iy (I 6F — Ty 6y + (Ls 8y — Iy 6) T+
-+ (I’,,T_")(duﬁg‘— 51161‘)'
Hence 7
Hy = (2_'"')(61111_1-}111)+(_ah11-'l+(2—n)rlzrh)6jl
and ' '
k == —-23,,1"_”+(2 .'—'.ﬂr) ThI‘.h.

We agsume still that n > 3. Let S be a smooth »-dimensional surface
in 0". We fix for a moment a point peS. We denote by §, the vector
space tangent to S at p. Let [%,...,14,] be the standard frame in C™
There exist conformal mappings which send 0¢C" to p in such a way
that the vectors 4,,...,4, are mapped into '§,. The same can be done
with points which lie dose to p. Thus there ex1sts an open neighbourhood
% of p in § and a smooth mapping which assigns to each ¢e# a frame
[e1(Q); ---5 6(q); €,41(q); -.+, €,(q)] 80 that the first » of them span a space
8, and the last % —» of them span the subspace which is vertical to the
first one. We let the group R x GL(R’) x GL(RE™™") to act on those frames
as follows:

([31; N A (N [4%], [-BL]))

|—>([t, Z,:A‘l'ep, ZA el,] [t 2B,+13L, ZBLeL])

This treatment yields a subbundle of W(C"8) which consists of those
frames which are split into two pa,rts so that one part spans §, and the
other spans its orthogonal complement. We denote the obtamed sub-
bundle by V(C* 8).

We .denote by = the natural projection which maps V(C" 8) onto
W(S). Then any bundle which is associated with V(0" §) may be pro-
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jected in a natural way to a bundle which is associated with W(C™). We
denote the associated projection also by = Thus = sends vector fields
on C to vector fields on §, pseudovector fields on C to pseudovector fields
on §, ete. For computations in local coordinates we proceed as follows:
If we have, for instance, a pseudovector a, then we assign it to some frame
from V(C" 8) and we truncate the last »—» components of a.

THEOREM 2. Assume that there is fizved a standard Weyl metric G
and some Hlavaty connection C on W(C™). Thus the immersion S—C" induces
a Weyl metric g on 8 and a Hlavaty comnection in W (S).

Proofi. If a, b are psendovectors on 8, then we put g(a, d) = G(a, b).
In order to define a connection on § we assume

Via = noPSa.
We have to show that there holds the identity
d.9(a,b) =g(Via,b)+g(a,V3b)
(see Definition 4 (i)). In fact, we have
0y9(a, b) = 0,6(a, b) = g("Ja, b)+g(a, P30)
= g(V5a, by +g(a, V3b)+0+0.

Let [#®y, ..., 2,] be a local field of frames on 8. Since C is the Hlavaty
connection, then we have

Veity = (VG a,) = :r(Vgﬂwa) =V,

(see Definition 4 (ii)). Then the local components I, I of the connec-
tion ¢ may bhe found from the formulas

Vo @y = Iy, Vg 6=1I,0,

6 being some pseudoscalar, for instance g. This finishes the proof.

From now on we Testrict ourselves to the case when » = #—1 and
we assume that § is orientable. Thus each space §, is spanned by one
vector. We equip § with a field of pseudovectors

n: S—8
p->n(p),

such that G(n, n) = 1. It follows from the construction of the connec-
tion ¢ that there exists a mapping & such that there holds the identity

(17) A0q =VCa+h,(a)n.
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This is the analogue of the classical “Gauss equation”. Since I7° a V. a 0
and n arve pseudovectors then h,o is a scalar ficld. We set

(18) Pin =3b,.

We shall prove that b, is a field of pseudovectors on S. We have on s:
0= 38 @(n, n)=2G(n, VE' n) and it follows that b, is orthogonal to m.

PB.OPOSITION 10 The mapping 'vr-ab may be expressed by g and by h
as follows: 5

b=—g oh

(Weingarien equality).

Proof. We have 9 ,G(n, a) = G(b,, @) +G(n, Poa+ hy(a)n). Hence
g(by, @) = —hy(a), thatis g~ (b,) = —h,(+). Thus we obta.mb = —g oh,.
We have the following local expression

(19) B = —gP*h,,

Now we shall deduce some identities which are analogous to those
of Riemannian geometry. In view of (17) and (18) we have
PovSa = VYVSasth,(a)n)
—VIV2 0+ hy(a) by +{VChy () + by (VS a)) 2.
The above identity implies the following relation between the curvature
tensors H and H which correspond to the connections C and C respec-
tively:
Ew,va' = Hw.ua'i'hw(“)b'u_ho(a')bw'i'
+(PZhy (@) —PF by (8) + Ty (P @) — By (PG 0) 0
Hence we obtain
ProrosrTioN 11. If H 48 identically 0, then we have

H, 0 = h,(a)b,— h,(a)b,
Using (19) we have the following expression in local coordinates:

(20) H“,A”= hmg eh —“hag h

THEHEOREM 3. If n =3 and » =2 and H vanishes identically on 8,
then the pseudoscalar curvatwre of the commection C is equal lo g det ().

This theorem may be obtained by an ‘easy computation from (15)
and (20). This is a certain modification of “theorema egregium” of Gauss,
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Howevel, it does not seem to be of great interest as far as we do not know
whether any non-trivial connections with vanishing H do exist (see for-
mula (16)).

Final remark. There exist surfaces in C"® such that there do not
exist smooth, non-vanishing tangent vector fields. Theorem 2 assures
the existence of a Weyl metiic of a Hlavaty connection on a surface.
This fact implies that the form y (see formula (8)) with local components
Iy, ..., I, can not be identified with any vector or a covector field on
the basic manifold. The same fact follows from (6). Thus any attempt
to define a Weyl structure by equipping & manifold with a Riemannian
scalar product and with some complementary vector field is a misun-
derstanding. Such an .approach agrees neither with a global point of
view, nor with fundamental notions assumed in the theory of geometric
objects [4]. ITn view of our remark on p. 190 there exists an other way
to define a Weyl structure on the manifold M. Namely a pseudotensor
which defines a Weyl metric may be identified with a class of positive
proportionality of Riemannian tensor fields. There is attached a counce-
tion form in such a way that the parallel transport of angle measures
is assured. Cf. [2]. '
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