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Abstract. Let I be the set of mappings f: C—C (C is the complex plane) such
that the image under f of a point seC is

1
f(8) = D ayesn  with  lim sup ogn
neN —>-+00 7

=DeR, U{0}, and of = + o=.

Then f is an entire funetion and is bounded on each vertical line Re(s) = o.
In this paper we have defined the arithmetic mean funciion 4 and the gencralized
arithmetic mean funetion .J,, reR, of Re(f), respectively, as

T

Ao,f) = m — [ [Ro(fla+in)t, Vo< d,
T

—>--00 2T
and
T

: 1 7 N
Jr(o, f) :Tl—l»lfco?T??bf_-,{,: |Re(f(z 4 it))|e"*dxdt, Vo< of,

and have studied a few properties of the funections A and J,. Beside establishing
the convexity of logJ,, we have shown that if f is of Ritt order g and lower order A,
then
e _ py SR eFl.f) o, suwp logd(ef) s log (e, f)
2 g1 inf o 6>+ 00 i0E o d—>+o0o 10 o

where log,z = loglogz, and F(o,f) = sup{lRe(f(a+it))]}, and if geB, and fis of
teR
type T and lower iype {, th_en

T lim sup logF(ifl _

lim P logd (o,f) lim sup logJ,(a, f)
t  poiooinf e s 4c0 Inf et " ooatoo Inf g0 ’

Finally, we have proved that

lim sup[inf]-:r—log(-fl(O‘»f)/Jr(U,f)) = p[4].

o—>-+ 00
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1. Lot E Dbe the set of mappings f: ¢ (C is the.-complex planc)
such that the image under f of a point seC is

f(s) = Za.,,c"’ n with  limsup logn _ DeR, . U{0}
neN N—--l-00 n
(R, is the set of positive reals), and ¢} = + oo (o] is the abscissa of con-
vergence of the Dirichlet series defining f); NV is the set of natural nunibers
0,1,2,..,<a,|neN) is a sequence in C, s = ¢4 it, o, te R (R is the field
of reals), and <{4,|neN> is a strictly increasing unbounded sequence of
non-negative reals. Since the Dirichlet series defining f converges for each
seC, fis an entire function. Also, since DeR U {0}, we have ([1], p. 168),
ol = +oo (¢f is the abscissa of absolute convergence of the Dirichlet
geries defining f) and we conclude that f is bounded on each vertical line
Re(s) = oy.
Let

(1.1) Mo, f) = ""tu';p{lf(o"l'it)l}y Vo< of

N

be the maximuni modulus of an entire function fe® on any wvertical line
Re(s) = g
(1.2) plo, f) = max{|a,len}, Vo< dl,

NeN

be the maximum term, for Re(s) = o, in the Dirichlet series defining f,

(1.3) o, f) = max{n|u(o,f) = ""nlBM"}J Vo< 0'!:7

neN

be the rank of the maximum term, and
(1.4) Plo,f) = slul%)[]Re(f(cr.v-[—-it))i}, Vo < of,

be the maximum modulus of Re(f) on the vertical line Re(s) = o.
‘We define the arithmetic mean function A of Re(f), for any feE, as

(1.5) A(e,f) = lim —T- f]Re (flo+it)@t, Vo< d,

J_
T—Loo < _ip

and the generalized arithmetic mean function J,, for any <R, of Re(f) as

a 7
f f IRe(f(z+ i) e*dwdt, Vo< o,

0 -7

(1.6) J.(o,f) = hm ‘)T -

and investigate a few properties of the funetions 4 and J, in this paper.
Most of the time, however, we shall study J, since it is a generalization
of A.
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2. We first study the convexity of J, in

THROREM 1. J, is a steadily inecreasing function, and logd, 18 a conves
function of o.

Proof. We adopt the method of Titechmarsh ([5], p. 174) to prove
this theorem. Let o, oy, 65¢ R be such that 0 < o; < 0,< 65. Also let
g: R—C and h: C—C be two functions defined, respectively, as

_ IRe(f(o'z‘f“ite))
- loglf(0'2+’£t2)| ,

Vi,eR,

g(12)

and

a

L(s) = lim

T
Toico 2T€™ ‘ log|f(s +its)l g ()™ dwdt,, VseC.
e " -7

It is clear from the definition of 2 that it is analytic in the half-plane
Re(s) < o3, and that k] attains its supremum on the boundary Re(s) = o3,
say at § = o4-+1it,. Hence

gy (0, f) = h(oy) < h(og+4-ity) < (03, ),

which shows that J, increases steadily with o.
‘We now choose f so that

(2.1) e"1J, (01, ) = "3 J (03, f) -
Then
3ﬁ02']r(0'e;f) =e"2h(o) < sup  |ePN(s)] < €P1h(oy) < 3ﬁclJr(°'17f):
oy <Re(s)< a3
whence
(2.2) eﬂang(azr IS 3ﬂa]Jr(°’1:f)~

Putting the value of § from (2.1) in (2.2), we get

03— O Gy —0a
2 2 logd,(6y, f) + — GllOng(aa’f)x

Ga_ 61 03 !

long(a'M f) <

which proves the convexity of logd,.

Then we establish

THEOREM 2. For every entire function feE of Ritt order oeR’ U{0}
(RY is the set of extended positive reals) and lower order Le R U {0},

(2.3)
X o § 1 J
0 _ yyy S logello,f) _ o suploged(e,f) |, suplogidi(o,f)

;' o-»+00 inf g c—>-+00 inf a a4 00 inf g
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where log,@ = loglogw. Moreover, if geR, and f is of type TeR™ U{0}
and lower type te R U{0}, then

(2.4)
T ~ lim slup log F (o, f) — lim s.up logAia,f) ~ lim s.up logd.(a,f) .
g-»oo 10T e’ ostoo INE e oo +0o IDF e’

Proof. We have, from ([1], p. 170)

T
1 -
25) @, — lim — f e~nf(s)dt, VneN and o< dl.
by

T—>+wT
But
1 4 1 .
(2.6) lim T f e~ taf(s)dt = lim ?[’_ Zamg("*"‘)‘mg-i”ndt
Tk 0 T—)+.°° iy. meN

T
= lim L f By e Wmttlg®m gy — @,
T>too meN t
the term by term integration being valid since the series ) @, el"~™m
meN -

converges uniformly. By_the addition of (2.5) and (2.6), it follows that

n

T
1 ,
a,en = lim 7 f 2Re (f(s)) e~ ndt.
ty

T—>+00
Therefore
1 T
la,|e” < lim — | 2|Re(f(s))|dt.
I ooT _r
Hence
(2.7) ﬂ(“:f)<4A(°"f)<4F(0".f)<4M(0'9f)'

Since ([2], Theorems 2.7 and 2.8), for every entire function fe¢E of
Ritt order peR’ U{0} and lower order Ae R} u{0},

(2.8)
® _ lim ‘Szul’loiz‘miﬂ _ fim S logeple,f) o sUDl0gA,
A 6orco Inf o rrtoo iNE a 6400 DT c '’

and ([4], Theorem 5) for any entire function fe i of Ritt order g< R U {0},
as g— —+ 00,

(2.9) log M (0o, f) ~logu(a,f),

the first two equalities in (2.3) and (2.4) now follow from (2.7) in view
of (2.8) and (2.9), respectively.
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In order to establish the last equalities in (2.3) and (2.4), we observe,
by (1.5) and (1.6), that

1 a
(2.10) T (0,0) == f Aw, f)e=de
1]
1
(2.11) <4(o,f) S L—e).
Hence
b l l 3 )
(2.12) i SUP 108 ogd, (o, f) < lim % loglogA(a,f)’
g—>-00 lnf g a->-+0a ln-f ) a
and
sup 1 sup 1
(2.13) lim TP 108J:loyf) o, sup logAle, /)

a—>+0o il’lf 696 a—>+ 00 in.f Bqa

Again, from (2.10), for any ceR_,

1 1
@14) T lo+8,)> =g [ Ale, e 0> Ao, (1-e).

Hence
sup logl sup logl

(2.15) i SO 108 ogd, (o, f) S lim S log og 4 (o, f)

G—>-|-00 lnf o © o->+00 lnf o
and

. sup logd,(o,f) 1 .. suplogd(o,f)

2.16 lim —_—>—1 =,
( ) ' gesqoo iNT e*’ s .,_E:L. inf ad

Since the left-hand side of (2.16) is independent of e putting ¢é—0, we,
therefore, get

~ . sup logd,(o,f) _ ..
(2.17) .,BEL inf €%’ = GHE,O inf e
Combining (2.12) with (2.15), and (2.13) with (2.17) we get the desired
result.

Remark. The result in the first equality of (2.3) is kmown ([3], For-
mula (2.8)). But we have given here an alternative and shorter proof
of it.

CoROLLARY 1. For every entire function feI of Ritt order geR_.U{0},
a8 o— 4 oo,

(2.18) logpu(o, f) ~log4 (a,f) ~logF (o, f) ~log M(a,f).

The result in (2.18) is obvious from (2.7) and (2.9).
Finally we show that

sup log A (o, f) ‘

o
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THEOREM 3. For every entire function feE of Ritt order oeR: U{0}
and lower order A< Ry U {0},

(2.19) iy SUP log(4 (0, N, (0, 1)) _ e
’ 6400 inf (23 A

In order to prove this theorem we need the following lemma:

LEMMA. For every entire function feE, ¢A(o,f ) is an inereasing
convex function of &°J.(o,f).

Proof. We have, from the definitions of 4 and J,,

e Ao, 1) _
dled (o,

whence follows the lemma, since by Theorem 1 it follows that log 4 is
an increasing convex function of o.

Proof of the theorem. We have

(logA o, 1)),

Ao, f)
— (ro-Flogd, (o =
( gJ: ’f) r(°'1f)
Therefore, for arbitrary o, oy, 0> oy,
r(o—on) +1087, (0, 1) —log (00, ) = [ “rod) aa,
(@, f)
or
(2.20) logJ,(c, f) = logJ, (o0, )+ [m, (e, )dw,
%
where '
(2.21) (@, f) = A(w A@h
EAH)

increases with o, by virtue of the lemma. Thus, for o > o, (2.20) gives
log (0, f) —logd, (0o, f) < (¢ —Go) My (0, f).
Therefore

sup logl sup 1
liy S log ogd, (o, f) < lim sup logm, (o, f
prd-co IDE a s too IOF o

or, using (2.3),
0

. sup logm, (o
< lim P 108 _'( 1) .
g—r4-00 110 ag

(2.22)
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Again, from (2.20), we get, for any heR,,

o-th

logd,(c+ 1, f) —logd (o, f) = f (2, f)de = hm (o, f),

@

which gives, in view of (2.3),

o .. sup logm,(a,f)
> lim | | ————.
L 7 g0 iDf o

Combining (2.22) and (2.23), we get

, Sup logm, (o, 1) _ e

2.24
( ) o—>+ 00 inf a A

The theorem now follows from (2.21) and (2.24).

The following corollary is immediate from Theorem 3.

COROLLARY 2. For every entire function feE of Ritt order ge R, U {0},
as g— - oo, '

(2.25) logd, (o, f) ~logA (e, f).

Remark. Combining Corollaries 1 and 2, we find that for every
entire function fe B of Ritt order geR. U {0}, as o— + oo,

(2.26) log u(a, f) ~logA(a,f) ~logd (s, ).
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