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Note on the spectral inclusion theorem
for Toeplitz operators

by J. JANAS (Krakéw)

Abstract. The author proves the spectral inclusion theorem for general Toeplitz
operators defined for a certain olass of function algebras. The same theoremn also
holds for Toephtz operators with a continuous symbol in & symmetric domain D < C”.

In what follows we will consider a generalization of the spectral in-
clusion theorem for Toeplitz operators. We will prove that it holds for
Toeplitz operators defined in the context of function algebras approxi-
mating in modulus and hypodirichlet function algebras approximating
in modulus. Moreover, it also holds for Toeplitz operators with a continuous
symbol, defined for a bounded symmetric domain D = CV. 4

Let A = 0(X) be a function algebra on a compact Hausdortf space X
and let x> 0 be a regular, finite Borel measure on X. Denote by L*(u)
the standard Hilbert space of complex y-square integrable functions
on X. We define a Hardy space H?(u) as the closure of A in L*(x). For
@ € L®(u) (» — essentially bounded) we define a Toeplitz operator by

T,f =Plp-f) for feH(u),

where P: L*(u)—>H*(p) is an orthogonal projection.

Denote by L, the operator of multiplication by ¢ in I?(u). Then
we can write. T,,,f PL,f.

For a bounded linear operator T in a complex Hllbart Space we
denote by o,(T) the approximate point: spectrum of 7'. In the case of
X = I"' — the unit circle, .4 — dise algebra, u — Lebesgue measure it
is well known. that ¢,(T,) = o(L,), see [2]. Moreover, the same inclusion
is also true for so-called Wiener-Hopf operators defined on a Hardy
space related to a locally compact abelian group, see [3]. Now we will
prove that the above inolusion holds for a Toeplitz operator defined on
H*(u), when A is approximating in modulus. Rocall that 4 is approxi-
mating in modulus if every continuous » > 0 on X can be uniformly ap-
proximated by moduli of functions from A.

’
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TeEOREM 1. Let A be a function algebra on X appromimating in mod-
wlus (V). If @ € L®(u), then

0,(Ty) @ a(Ly,).

Proof.. With no loss of generality we can assume that 0 ¢ o,(T,),
i.e., there exists an &> 0 for which

TR SR for all fe B (u).
It follows that ,
[10l* 1fI*au > ¢ [ (fi*au  for all fe 4,
and so by our assumption we get

f]cp|2 [f|2cl/,¢,>/£2f|f|2d,w for every continuous »> 0,

Therefore 0 ¢ ¢(L,). The proof is complete.

Denote by |l the essential supremum of ¢ € L*(u). The above
inclusion proves the equality ||T,| = |l¢ll,. Wo also derive the following
corollaries.

CororLARY 1. If ¢ € L™ (u), then the operator T is quasi-nilpotent if
and only if ¢ = 0.

. For any operator T write W(T) = {(Tf, f), fll =1}. Then we get,

COROLLARY 2. If p € L®(u), then W (T,) = W(L,) (the closure).

COROLLARY 3. If' p € O(X), then T, is compact if and only if ¢ = 0.

COROLLARY 4 (see [2]). If p € C(X) and I is a non-zero function holo<
morphic in an open set which includes o(T,) and such that F(T,) =0,
then T', is a scalar.

Note algo that Theorem 1 includes the' spectral inclusion theorem
for a Wiener—Hopf operator (mentioned above) in the case of a compach
abelian group. For further properties of Toeplitz operators in the context
of a function algebra approximating in modulus consult [6].

The next theorem shows that the spectral inclusion theorem holds
also for Toeplitz operators related to hypodirichlet algebras. Recall that A4
is hypodirichlet on X if the uniform closure of Red has a finite codi-
mension in Cp(X) and the linear span of log|4~!| is dense in Cx(X). The
standarcd example of such an algebra is E(X), where X is a compact
subset of the complex plane C whose complement has a finite number

(1) It is enough to assume that the {linear span of {|v|2, ved} is dense in
O (X). .
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of components [4]. If 4 is hypodirichlet on X, then every £ e Sp A (spec-
trum of A) has a finite-dimensional set of representing measures M, and
has a unique logmodular measure m € M,.

We define H*(m) and a Toeplitz operator T, for ¢ € L®(m), as above.
Now we have the following theorem.

THEOREM 2. Let A be a hypodirichlet algebra on X. If @ € L™ (m),
then o,(T,) = o(Ly,).

Proof. If 0 ¢ ¢,(T,), then there exists an ¢ > 0 such that [|T,f]|2 > &*|f[|*
for every f e H?(m). Let B < X be an arbitrary Borel set. Then for every
K =1,2,... the function fx = yx+1/K satisfies the inequality [logfzdm
> —oo. By Theorem 10.3 of [1] there exists a gz € H*(m) such that
fx = |gg|* Sinee

[ 1912 lgxl2dm = ¢ [ gxl*dm,
we have
Jipltwg+1/E)dm > e [ (pg+1/K)dm.
Hence we get

f lp|2dm = e2m (F)
E

and 80 0 ¢ o(L,). This proves the theorem. One can also derive corollaries
of Theorem 2, analogouns to the previous corollaries.

Now we will consider a Hardy space of functions on a bounded sym-
metric domain D < C¥ (N > 1). Let D be a bounded symmetric domain
in C¥, 0 € D, with Bergan—Shilov bhoundary D, M the group of holo-
morphic antomorphism of D and K its isotropy group. K acts by unitary
linear transformations on C¥ and is transitive on D, and b.D has a unigue
normalized K — invariant measure u. See [7]. The Hardy space H*(D)
is the get of holomorphic functions in D with

I = sup ( [1700Ea)" < +oo.

0<r<1 'pp

By Theorem 2 of [5], H*(D) is isometrically isomorphic with a certain
closed subspace 8 of L*(bD, u). Consult [6] for various characterization
of 8. Let P: L*(bD, u)—S be an orthogonal projection. We define for
4 € L®(u) a Toeplitz operator T, on 8 by T,f = P(¢p-f).

‘We prove the following

THEOREM 3. If ¢ € C(bD), then o,(T,) > o(L,).

Proof. Let g(z) = 0, where # ¢ bD. Koranyi defined in [7] a function
Pu; 2) = |S (%, 2)|28(2,2)"! for ueU and zeD, where U = bD (the
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closure of U) and §8(z, w): D x D—-C — the Szego kernel of D. Moreover,
for every fixed z e D the funection S(u,2) = S,(4) extends uniquely to
the function 8,(-) € 8. By Theorem 4.7 of [7], the function P (u, 2) has
the following properties:

(a) P(u,2)>=0 for all webD, z€ D,
(b) fPu, 2)du =1 for all ze D,

(c)‘for every n >0

lim [ P(u,2)du(w) =0 for all u,ebD.

0 ju—ugi>n

Now, using these properties, it is easy to construct a sequence f, € §
(IIfxl = 1) such that

(1) 1Tefall >0,  m->oc0.
Indeed, for a sequence D3 A,—% we put

Falw) = 8(uy A,) (8 (Ayy 4,))7
Then by (b) |If,ll =1 and

(%) IToful? < ILpful® = [ lpl? 15,2
bD

< [ Pl [ lpltlfutda.

lu—2l<n Nu—g|>7

For a ;g"iven £ > 0 there exists an # > 0 such that

f lpl2if tdu < 4e  for m =1,2,..,

lu—g|<n
And by (e) there exists an n, such that
f lpl21f, )20 < % for all u > m,.
lu—g| >y

Thus inequality (%) proves (1). -

Remark(?). We do not know whether Theorem 3 holds for every
@& L®(u). '

() Now we know that Theorem 3 also holds for any D (bounded, symmetric)
whmh is biholomorphic with a baJl or a polydisec in C™,
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