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On Hilbert’s Irreducibility Theorem

by A. ScHINZEL (Warszawa)

In this paper irreducibility means irreducibility over the rational
field and all polynomials and rational functions considered are supposed
to have rational coefficients Hilbert’s Irreducibility Theorem asserts
that if polynomials fm(tyy ey by @1y ooy ) (m =1, 2, ..., n) are irreducible
as polynomials in r+4s variables and a polynomial z(?,,t,, ..., %) is not
identically 0, then there exist infinitely many integer systems (¢, t2, ..., t,)
such that all the polynomials fm(ti,t2, ..., %, @, ..., %) are irreducible
as polynomials in x,, ..., #; and 2(t1, &3, ..., t;) # 0 (ef. [3], Chapter VIII,
§ 2). The main aim of this paper is to prove the following refinement
of this theorem.

THEOREM 1. Let fm(lyy ooy lry @1y eey @) (1 <m < n) be drreducidble
polynomials in r+s variables and let 2(t,, ..., 1) be any polynomial +#0.
There exist r arithmetical progressions Py, ..., P, such that if 1 ¢ Py
(1 <1< r), then all the polynomials fm(ti, ..., try @1y ..., Ts) are irreducible
as polynomials in T, ..., s and 2(t1, ..., t;) # 0.

The Theorem applies also to fractional values of ¢ if we adopt the
following definition. ‘

DEFINITION. An arithmetical progression consists of all rational
numbers = b (mod a), where a, b are fixed integers, a # 0 and the con-
gruence for rationals is understood in the ordinary sense.

The proof of the fundamental lemama follows closely the proof of
Theorem 1 in [1].

LeMMA 1. Let F(1,, ..., t., u) be a polynomial such that for no rational
function @(tyy .oy ty)y Fltyy ooy try @(tyy oy t)) = O identically. There exist r
arithmetical progressions Py, ..., P, such that if e Py (1 <1< 7), then
F(tyy ceey tpyu) # 0 for all rational wu.

Proof. We may assume without loss of generality that ¥ has
integer coefficients. Using Gauss’s Lemma we factorize F' into a product
of polynomials with integer coefficients:

(1) Ftyy ooy teyu) =Fo(tyy oy L) Bty ooy by %) oo Frllyy ooy try )
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334 A. Schinzel

where & > 0 and each F; (1 <j < k) is irreducible, of positive degree
d; in u. Let a; (t,,...,1;) be the coefficient at w% in F; (1 <j < k).

It follows from the assumption that d;>1 (1 <j < k). It follows
from Hilbert’s theorem that there exist integers t,t;, ..., such that
all the polynomials Fy(t;, ..., t,, ) are irreducible and

k
Po(thy ooy ) [ [ astti, ooy 1)) #0.
j=1
Since each Fy(ti,...,t,, ) is irreducible of degree >-1, there exist for
each j < k infinitely many primes ¢ such that the congruence
Fy(ty,y ..., try u) = 0 (mod q)

is ingsoluble ([3], cf. also proof of Theorem 1 in [1]), and in particular
there is a prime ¢; with the above property, such that

(2) Fo(t;: vy t;)ai(t{, cery t,'.) $0 (mOd qy') (1 S:’. < k) .

Now, let P; be the progression ¢,¢,... qxv+1t and assume that
e Py (1 <1 =Cr), i.e. "

(3) i =fi(modgq,...qx) (1
It follows that

Foltyy ooy b ailtyy ooy &) = Fofti, ..oy t)ai(t, ..oy t) (mod g1 ¢, - gi)

i

L<r).

and by (2)
(4) Foltyy ooy te) #0,
(5) ajtyy ..oy tr) F0(mod ;) (1 <j<k).

Suppose now that for some rational u,, F({,, ..., t,., 4,) = 0. It follows
from (1) and (4) that ¥ > 0 and for some j, <k

(6) Ffo(tl’ very Try %) = 0.

By (3) the denominators of ¢, ...,% are not divisible by ¢;,. In view
of (5) the same is true for the denominator of u, and (3) and (6) imply

Fi(tiy ...y t;, u) = 0 (mod g;,) ,

which is impossible by the choice of ¢;,.
This contradiction completes the proof.

Proof of Theorem 1. It follows from Kronecker’s criterion for
the reducibility of polynomials in several variables (cf. (3], Chapter VIII,
§ 3) that for every irreducible polynomial f(t, ..., ., 2, ..., &;) there exists
a finite number of irreducible polynomials g(t,,...,t,y) and a polynomial
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D(t, ..., t;) 7 0 such that if for some ¢;, ..., ¢; all the polynomials g;(¢1, ..., tr,¥)
are irreducible and @ (¢, ...,t,) # 0, then f (&1, ..., 1, 21, ..., &) is irreducible.
In view of this fact it.is sufficient to prove our Theorem for s = 1. We
shall do that by induction with respect to n.
For n =1 let
]
Jiltyy ooy try @) = f = Za,(tl, ey L)

=0

By Lemma 1 of [5], for each positive integer ¢ < j there exists a poly-
nomial Q;;(u; vy, ..., v;) with integer coefficients (the coefficient at the
highest power of % being equal to 1) having the following property.

If A(x), B(x) are arbitrary polynomials,

7 h
A(z) = Za.w"-", B(x) = Zb,wh-v, agbyg 0, h>=i
y=0 p=0
and B(z) divides A (z), then
(7) Qi (b" e S ﬁl) —~0.

E);_a—o’ Qg
For ¢ <j let

(8) i (“; ay(tyy ooy b))y Agllyy ooy br) @altyy ey Br)y ey {2y -"’tr)"_lazi(tl’ --°7tr))

my
= Fi(lyy euey b3 u)” (u—piutsy ey )
p=1

where m; > 0, F; and y;, (1 < u < m;) are polynomials and for no poly-
nomial p(¢, ..., )
Fi(tyy ey try p(tyy .oy 7)) = O identically.

Since Fy(t,, ..., t,, v) has the coefficient at the highest power of
equal to 1, it follows that for no rational function ¢(t, ..., t,), F(ty, ..., t,

@(tyy ..., 1,)) = 0 identically, and thus for no rational function ¢(t,, ..., t,),

i
(9) [ F:ts, .., tey 9(ts,y -y 1)) = O identically.
i—1
Now, let ¢, be the least value of ¢ <j such that m; = 0, if such

values exist; otherwise let 4, = j. For each positive integer h < ¢, and
each system py,, ..., up, where 1 < p; <m; (1 <% <<h) put

(10) gm,...,m.(tls LA ] tr; CU)

h
= (@gltis ooy D) 4 D Piulty oovy t)(@ollay woey t)2)" 7
i=1

23+
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Since f is irreducible and % < j, the polynomials f and g,,,..,
relatively prime; thus there exist polynomials Q... ..(t, ...y &y Z),
Sup,oun(tyy ooy try ) and Ry, . .u(t, ..., 1) such that

(11) Qurvvon T 8y in Gureein = By # 0.

Now by Lemma 1 and (9) there exist r progressions P,, ..., P, such
that if ;e P; (1 <1 <), then

)
(12)  @oltyy ey t)2(tyy s 1) [ [ R onty ooy ) [ Filtyy ooy by ) # 0
Hlseeostih =1
h<ig

for all rational w.

We are going to prove that these progressions P, ..., P, have the
properties required in the Theorem. Suppose, therefore, that for some
t1y...ylp Where 1e Py (1 <1< 1), f(tiy...,t;, #) is Teducible and divisible
by a monic polynomial

h
(13) g(z) = a4+ D p,a*r, where 1<h<j.
p=1

By (12), ag(ti, ..oy t7) # 0. Put a, = a,(tr, ..., ;) (0 <» <),

;
j— ’ , T : — j -
A(x) = a lf(tn ---;tn;) =a + 2 e "
0 y=1

B(a) = a{,‘g(afo) =+ éj &,

Clearly B(z) divides A(x), and by (7) for each 7+ <h
2;5(a0fi; 0yy A, oy BB ay) = 0.
By (8) and (12) it follows that ¢, > 1, h < 4, and that for some system
Py eeey Hh
al‘)ﬂi = Wi.#;(t{’ ey ta") 1<i<h 1< .”'1, < my) .

This gives by (13) and (10)

h
(14) Cg@) = (@2)* + Y pislthy ey 1) (2p2)*

ie=1

’

g gpi"“"‘z(t{, ceny tr’ m) .
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Since h < j, we have by (11) and (12)

= I‘;,l---al‘h'(t{’ very t;') #0.

It follows hence by (14) that g(x) divides

Rufprig(ty oy ) #£ 0,
which is impossible.

The contradiction obtained completes the proof for » = 1. Assume
now that the Theorem holds for n—1 polynomials (# > 1) and that we
are given n irreducible polynomials fu(t,,...,t,z) (1 <m <n) and
a polynomial z(¢, ..., t.) not identically 0. By the inductive assumption
there exist r progressions, say au-+b (1 <1<7r), such that if ¢ =4
(mod a;) (1 <1< r) then fu(t,...,t,x) for m < n are irreducible and
2(t1y ey ty) # 0.

Now, fa(a,u,+by,...,a;%,+b,,2) is an irreducible polynomial in
Wy ..., Uy, & and therefore by the already proved case of our Theorem
there exist r progressions, say ¢o+d; (1 <1<r), such that if u;=d;
(mod ¢;) then fn(a,u;+ by, ..., a,u,+b,, @) i8 irreducible. Denote by P; the
progression a;¢v+ (apdi+by) (1 <1< r). If t;e P, then the polynomials
fm(tiy ooy try ) (1 < m < m) are irreducible and z(t,...,%) # 0, which
completes the inductive proof.

Since rational numbers belonging to a progression according to our
definition form a dense set, we get

COROLLARY. Let fm(tyy ooyley @1y ey Ty) (1 < m < n) be irreducible
polynomsals in r+s variables. The set of all rational points (i1, ...,1t,) for
which the polynomials fm(ti, ..., try @1y ..., @) (1 < m < n) are irreducible
contains a Cartesian product of r dense linear sets.

As the second application of Lemma 1 we prove the following
generalization of Theorem 1 in [1].

THEOREM 2. Let F(t,, ..., t,, ) be a polynomial such that for no poly-
nomial (i, ..., 1),
Fltyy ooy tey 9ty ey ty)) =0

identically. There exist r arithmetical progressions Py, ..., P, such that tf
hePr 1 <1<r), then

F(tyy ...y tyyu) 0  for all integers u.

LEMMA 2. Let gm(ty, ..., 1) (1 <m < n) be rational but not integer
functions. There exist r arithmetical progressions Py,..., P, such that if
ty € Py, then neither of the numbers m(ly, ..., 1) is an integer.
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Proof by induction with respect to n. For n =1, let

g(tl’ e tf)

Pullys ey tr) = W &) ’
cery

where g, h are coprime polynomials with integer coefficients and A is not
a constant. Without loss of generality we may assume that h is of po-
gitive degree in t;. Denote by ay(ty, ..., t,) the coefficient at the highest
power of ¢, in h.

Since (g, k) =1, there exist polynomials @ (%), ..., %), Sty ey ls)
and E(f,, ..., t) such that

(15) Qg+8h =R +#0.

Choose integers ts,...,% so that aytz, ..., t;)R(ts, ..., &) # 0. Since
h(t,, 15, ..., t;) depends upon i, there exists an integer ¢; such that

¢ = |h(t{7 ey t;')l > ]R(téa ey t;')l .

Denote by P; the progression cv+# (1 <I<r). e P (1 KIK ),
we have

h{ty, ey ) = h(t, ..., 1) = 0 (mod ¢)
R(tyy ooy t;) = R(&, ..., t,) 54 0 (mod c)

and in view of (15)
g(tyy ey t7) 5= 0 (mod o) ,

which proves that g(¢, ..., %.)/k(ty, ..., ;) 18 not an integer.

Assume now that the Lemma is true for n»—1 rational functions
and that we are given » rational but not integer functions ¢gu(t,, ..., )
(1 <m < n). By the inductive assumption there exist r progressions,
say qqu+b; (1 <1<r), such that if {, = b; (mod a;), then none of the
numbers @p(t;, ..., ;) (1 < m <n—1) is an integer. Now ¢,(a,4,+ by, ...,
arur-+br) is a rational but not an integer function of u,, ..., 4r, and
therefore, by the already proved case of our Lemma, there exist » pro-
gressions, say ¢v+d; (1 <1<r), such that if w = d; (mod ¢;) then the
number ¢(a,4,+ by, ..., a,%,+b,) is not an integer. Denote by P; the
progression a;ev+ (ardy+ b)) (1 <I1<r). If e P, (1 <1< r), then none
of the numbers gu(t;, ..., #) (1 < m < n) is an integer, which completes
the inductive proof.

Proof of Theorem 2. By the assumption, polynomial ¥ can be
written in the form

n

F(ty, oytryu) = Fo(ty, ..., tr, u) n(“_?’m(tl’ ooy t,.)) y

m=1
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where F, is a polynomial such that for no rational function ¢, Fo(tl, vy Ury
@(tyy ...y ty)) = 0 identically, n > 0 and ¢n (1 < m < ) are rational but
not integer functions.

By Lemma 1 there exist » progressions, say au-+b (1 <1<7),
such that if ¢, = b; (mod a;), then

Fy(ty, ...y tryu) 0  for all rational w.

By Lemma 2 there exist r progressions, say av+d; (I <1<7),
such that if % = d; (mod ¢;), then none of the numbers gn(a,u,+ b, ...,
arur+b) (1 <m < n) is an integer. It follows that the progressions
v+ (mdi+b) (1 <1< r) have the properties required in the theorem.

The following modifications of Lemma 1 and Theorem 2 could
seem plausible (cf. [6]).

M1. Let F(ty, ..., l, u,v) be a polynomial such that for mo pair of
rational functions @(t,, ..., &), p(tyy ooy lr)

(16) Flty, ooy try @ty coey 1)y 9ty ooy t)) = O ddentically.

There exist r arithmetical progressions Py, ..., Py (respectively an infinite
set S of integer points) such that if e Py (1 <1<r) (respectively
(8, -y te) €8), then

Ft,...,t;,u,v) 0  for all rational u,v.

M2. Let F(tyy ..., &, u,v) be a polynomial such that for mo pair of
polynomials @(tyy ...y tr)y P(lyy ..y tr), (16) holds. There exist r arithmetical
progressions Py, ..., Py (respectively an infinite set S of integer poinis)
such that if ti e Pr (1 <1< 1) (respectively (1, ...,1%) € S), then

F(tyy ooy tryu,v) 20  for all integers u,v.

Now, the strong form of M1 and both forms of M2 are false, as
shown by the examples F\({, u, v) = t+ 2+ v* and Fy(t, u,v) = (2t —1)u—
— (v24+1) (v2+ 2) (v — 2), respectively. Indeed, as to the former, it is well
known that the equation 3s®*4 u2+v® = 0 is insoluble in rational w,v
for every rational s # 0, which would not be possible if for some rational
functions ¢(f), p(f) we had an identity F,(t, ¢(t),p(t)) = 0.

On the other hand, if av+b is an arbitrary progression P, then
according to a well-known theorem (cf. [4]) there exist integers u,, v, such
that —u2— vy ¢ P and thus for #, = —ug— s, t, € P and F,(t,, %,, v) = 0.

As to the second counterexample, if for some polynomials ¢(?), p(?)
we had an identity F,(t, ¢(t), (t)) = 0, then

(w(32+1) (p(2r+2) [wiEr—2) =0,
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which ié impossible. On the other hand, if ¢ is any integer, we easily
see by factorizing 2¢t—1 into prime factors that the congruence

(v*4+1)(v2+2)(v*—2) = 0 (mod 2¢—1)

is soluble and so is the equation Fy(t, u,v) =0.
As to the weak form of M1, I am unable to disprove it and to prove
it seems to me very difficult even for » =1.
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