ANNALES
POLONICI MATHEMATICI
XLIV (1984)

Central motions

by RonaLp A. Knigut (Kirksville, Mo, US.A)

Abstract. We obtain the [ollowing extension of a well-known result on metric phase spaces
which are locally compact or complete. The set of Poisson stable points of a nonwandering flow
on a locally compact Hausdorff phase space is dense in the phase space. Moreover, this extends
Birkhoff’s classical conclusions for certain Euclidean n-subspaces to locally compact Hausdordf
phase spaces. We conclude our observations by verifying that any closed trajectory satisfying the
Baire property is homeomorphic to a point, a circle, or the real line.

The classical concept of central motions introduced by Birkhoff (see [3])
are considered anew in this paper. Birkhoff directed considerable attention
toward developing a theory for qualitatively determining all types of so-
lutions or motions and their interrelationships for dynamical systems.
(Autonomus systems of differential equations of the general form dx;/dt
=fi(xy, ..., X,), i =1, ..., n, whose right members are continuous in some
region of R" were referred to as dynamical systems.) Birkhoff demonstrated
that in a closed n-dimensional manifold M there is a set M; of central
motions (nonwandering motions) towards which all other motions of the
system tend asymptotically. Using transfinite induction the largest closed
subset M, whose points are all nonwandering with respect to M, was
obtained. This set was called the set of central motions of M and was shown
to coincide with the closure of the set of Poisson stable points.

Nemytskii and Stepanov [4] carry out this construction for a gen-
eralized dynamical system on a compact metric phase space with identical
consequences. The extension to a locally compact metric space is an easy
next step. In view of these results, the set of central motions or center of a
continuous flow on a Hausdorff phase space has been defined to be the
closure of the set of Poisson stable points (see [1]).

Bhatia and Hajek give the following generalization of Birkhoff’s classifi-
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cation of the center of a nonwandering flow. If the phase space X of a
nonwandering flow is metric and either locally compact or complete, then
the set of Poisson stable points is dense in X, ie., X is the center. Our
principal task here is to show that this result extends to locally compact
Hausdorff phase spaces. We also show that the set of wandering points tend
uniformly to the extended nonwandering set so that Birkhoff’s concept of a
center coincides with the generalized definition whenever the phase space is
locally compact Hausdorff. We give an example to show that a flow on a
nonlocally compact Hausdorff phase space need not enjoy this property.
Finally, closed orbits satisfying the Baire property are classified.

Throughout the paper we assume that there is a given flow (X, n) on a
Hausdorff phase space X. We shall denote the orbit, limit set, and prolonga-
tional limit set of x in X by C(x), L(x), and J(x) respectively. The unilateral
sets carry the appropriate + or — superscript. A point x is positively
(negatively) Poisson stable provided xeL'(x) (xe” (x)) and x is Poisson
stable if it is both positively and negatively Poisson stable. A point x is
nonwandering if xeJ(x). The reader may consult [1] and [2] for basic
dynamical system concepts used herein.

We now obtain our major result.

THeorRem 1. The set of Poisson stable points of a nonwandering flow on a
locally compact phase space is dense.

Proof. Let (X, n) be nonwandering and X be locally compact. Select a
non-Poisson stable point x and a relatively compact open neighborhood V
of x. Since xeJ(x), Vn Vi, # Q@ for some t; > 1. Denote V Vi, by V.
Each point of V, is nonwandering so that there exists a t, < —2 such that
V, =V, nV;t, is nonempty. Similarly, there is a ry; >3 such that V;
= V,nV,t; # Q. Evidently, we can proceed inductively to construct a
sequence (V,) of relatively compact subneighborhoods of V with V,,, <V,
and V,,(—t,4+) < V,for each n>1. Let M =\ V,. Then for any y in M,
there exist subsequences (1,) and (t,) of (r,) such that (yr,) and (yt,)
converge in the compact set M as t, =~ +© and t, — —cC. Thus
L'y)oM#Q@and L (y))n M # Q for each y in M. Next, let B denote the
collection of all limit sets L' (z) for ze M and let A be a chain in B. Then
M r\(ﬂ L (q) = (M N L' (q)) contains at least one point p. Thus,

L* (p) = L' (q) for each L' (g)e A. By the dual to Zorn’s Lemma, B contains a
minimal element L'(z). Let z, be an element of L'(z)~n M. Then
L' (zp) = L' (z) = L (z4) so that we have zye L' (z) = L' (zp). Also z5 in M
implies that L (zo) "M # @. For peL (zo)» M we have L' (p) = L (z,).
Furthermore, L' (p) » M # @ implies L' (zo) = L* (p), and hence, zo€ L (z).
Thus, z, is Poisson stable. Since each relatively compact neighborhood V of
x contains a Poisson stable point z,, x is contained in the closure of the set
of Poisson stable points. The proof is complete.
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CoroLLARY. Let X be locally compact. The set of Poisson stable points is
dense in the set of central motions (in the sense of Birkhoff).

By noting that the center M of a flow on a locally compact space X
contains the interior G° of the set G of nonwandering points, we obtain the
following corollary. This statement is a consequence of xeJ* (x)n G°
= J lo(x) (the prolongation of x relative to G°) for each xe G (see 3.24.9 of

[1]), ie, X = MuU(X\G).
CoroLLARY. If X is locally compact, then the set consisting of the Poisson
stable points and the wandering points is dense in X.

The set of central motions of a wandering flow on a locally compact
Hausdorff phase space need not coincide with the set of nonwandering
points. Example 3.10 of [4] is such a flow. On the other hand, if X is not
locally compact, the set of central motions need not be dense in X even
though the flow is nonwandering. We give such an example on a nonlocally
compact noncomplete metric space. The flow given in Example 4.06 of [4] is
defined on a torus T There is precisely one critical point p, L"(x) = !p|
= L (y) for exactly one orbit C(x) and exactly one orbit C(y), where L (x)
=L"(y)=T, and T = L(2) for each noncritical point z. Let X = C(y). Then
X = C(y) = L%(y) (the positive limit set of y relative to X) whereas L(y)
=@. Thus, (X, n|X) is a nonwandering flow containing no Poisson stable
points.

Next, we show that the set of nonwandering points of the extended flow
(X*, n*), where X is locally compact, uniformly attracts each wandering
point.

THeEOREM 2. Let X be locally compact. Then for any neighborhood V*
of the nonwandering set of (X*, n*) there exists a T, > O such that V* {0, T, ]
= X*

Proof. Let V* be an open neighborhood of the nonwandering set M*
of X* where (X*, n*) is the extended flow on the one point compactification
of X. For any wandering point x we have @ # [**(x) = M* since all limit
sets consist of nonwandering points. No orbit can be frequently out of V* in

either direction. We define t, =inf{reR*: xto¢ V*, xt,;eV* and 0<1,
<ty <t} for each xe X* That 0<t, < +aoc for each xe X* is obvious.
Define T, =sup {t,: xeéV*!. For each xedV* there exists an open neigh-

borhood V, of x such that V t, = X*\V* and V. (t,+¢,) = V* where
e, >0 and 0 <ty <1t,. Thus, for each zeV,, 1. <it,+¢,. Since V* is
compact there is a finite cover {V; , ..., V, } of @V'*, and hence, 7, < max {1, +
+é,: 1<i<nj. For any x¢V* let t=inf{teR™: x[t, 0] = X*\V*].
Evidently I* (x) € M* implies — o0 <1 < 0. Now xe(xt)[0, T,,] =« V*[0, T,]
since —7 <t < T,. Hence, X* =« V*[0, T,/].

Since each invariant strong attractor is stable (2.15, [1] or 8.15, [2]) the
following corollary is evident.
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CoroLLary. If X is locally compact, then the flow is nonwandering if and
only if the extended nonwandering set is a strong attractor.

We now turn our attention briefly to classification of brbits satisfying
the Baire property.

ProrosITION 1. An orbit C(x) is homeomorphic to R if and only if x is
not unilaterally Poisson stable.

Proof. Let h: R —» C(x) be a homeomorphism of R onto C(x). Then
h(t) = xn; ' h(t) for each teR. The mapping n,'h: R >R is a bijection,
and hence, h™!m, is a continuous bijection of R. Thus, h™!'n, is a
homeomorphism. The mapping n, = h(h~ ' n,) is a homeomorphism. Let (xt;)
be a net such that xt; —» x. Then = *(xt;) > n;'(x) = 0. Hence, x¢ L(x).

Conversely, let x¢ L(x) and suppose that V is an open interval with
7. (V) not open. Then there is a net (xt;) in C(x)\n.(V) converging to a point
xto in m,(V). Some subnet (t,) of (t;) converges to a point t; because no
subnet of (¢;) can diverge to 4+ 00 or —oo. The fact that x is a regular point
implies ¢, = to. But this means that (t,) is ultimately in ¥, and hence, that
(xt,) is ultimately in n,(V) which is absurd. Hence, =, is an open map.

CoROLLARY. An orbit C(x) is homeomorphic to R if and only if n, is a
homeomorphism.

ProPosITION 2. 4 closed orbit C(x) satisfying the Baire property is
homeomorphic to R, S,, or a single point.

Proof. The map f: C(x) — S, defined by f(xt) =c is (2nt/T), where T
is the fundamental period of a periodic point x is a homeomorphism.
Whenever C(x) is a critical orbit it is a single point. Finally, let x be a
regular trajectory. The sets L(x)\x[—n,n], n=1, 2,3, ... are each open
dense subsets of L(x). Hence N(L(x)\x[—n, n])=L(x)\U x[—n, n]
= L(x)\C(x) = Q@ is dense in L(x) by the Baire property so that L(x) = Q.
By Proposition 1, n, is a homeomorphism. The proof is complete.
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