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Description of a class of multivalued differential equations
with almost weakly stable trivial solution

by MicHAL KISIELEWICZ (Zielona Goéra)

Abstract. In the present paper a multivalued differential relation of the form
(1) % e F(, z),

is considered. It is shown that the class & of all multivalued mappings F defined
on [0, oo) x R® for which the trivial solution zp = 0 of (1) is almost weak stable is
an Fgy, set in any complete metric space.

1. Introduction. It is the purpose of this note to present a description
the class of all multivalued differential equations of the form

(1) zeP(t, x)

with the almost weakly stable trivial solution. It is shown that the class
& of all multivalued mappings ¥ defined on [0, co) x R" for which the
trivial solution zp = 0 of (1) is almost weak stable, is an F,, set in
any complete metric space. The weak stability theorem for multivalued
differential equations of form (1) has been proved in [5].

2. Notation and basic definitions. Let R™ be the n-dimensional Euclid-
ean space, 0 its zero element, |z| the norm of z € R". For non-empty
sets 4, B « R" we use the Hausdorff distance 2(4, B) = max[r(4, B),
r(B, A)], where r(A, B) = sup{a(x, B): x € A} and a(z, B) = inf{|z—
—4|l: vy e B}, The set of all non-empty compact convex subsets of R"
is denoted by £2". Let ¥, denote the Banach space of continuons mappings
of [0, T] into R" and let ¥} be the Banach space of (equivalence classes
of) Lebesgue integrable mappings of [0, 7'] into R".

We say that F: [0, co) X R"—>Q" satisfies Carathéodory type con-
ditions if F(-, ) is measurable in ¢ > 0 for every fixed z € R*, F(t,-) is

continuons in z € R" for fixed ¢ > 0 and there is an mg € (£ such that
T>0

I|F(t, @)l < mp(t) for ae. t>0 and & e R"; |F(t, x)l, = h(F(t, z), {0}).
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It is known (see [1], [3]) that for every F satisfying Carathéodory type
conditions and for every T > 0, 2, € R and 7, > 0 there exists an abso-
lutely continuons mapping z(-; o, @,) of [0, T'] into R" such that x(t,; o, o)
=&, and &(t; 1y, @) € F(t, x(t; Ly, @) for a.e. te[0,T]. If the above
conditions are satisfied for each T' > 0, then the function z(-; {,, z,) ﬂ%.

will be called a trajectory of (1) corresponding to (%,, z,, F'). The unlon
of all trajectories of (1) corresponding to (f,, #,, F) will be denoted by
S(to’ wo’ F)‘

Let ./ denote the set of all positive integers and let ¢ = [ \%p.
>0
By ppwe shall mean the seminorm of € ¢, defined by p,(z) = sup {|z(?)||:

0<t< T} It is known (see Yosida, Functional analysis, 1968, p. 23)
that the space ¢ together with the metric d defined by

Pr(z—19)
(@, 9) = 22'—" 14 pp(z—y)

for x, y € ¥ is a complete metric space.

In a similar way we construct the complete metric space (%, o).
For this, let us denote by & the quotient space of all mappings F': [0, oo) X
x R"—0" satisfying Carathéodory type conditions determined by an
equivalence relation ~ defined in the following way:

F~@ iff F(t,z) =G(i,x) for all x € R" and a.e.t1> 0.
Similarly as in [4] it can be verified that o: & x% —R! defined by

er(F, G)

F, @) = 7
= L Ten(s, @)

where
T
er(F, @) = sup|{[ h(F(t,0), 6(t, 2))dt: @ e R}
0

for ', @ € ¥ is a metric in £.
It is not difficult to verify that (¥, o) is a complete metric space.

3. Almost weak stability. We shall consider multivalued differential
equations of form (1) under the assumption that the right-hand side
F e # is such that 0 € F'({, 0) for a.e. t €[0, 7] and all T > 0. Denoting
by &, the set of all such mappings F' € &, we see that #,is a closed subset
of #. Suppose that F € #,. The trivial solution zp = 0 of (1) is called to be
almost weakly stable if for each 1, > 0 and & > 0 there is & 4 > 0 such that
for every x, € B(0, d)(*) there exists a @(-, ty, @,) € S(%y, &y, F') such that

) B (0, 6) denotes the closed ball of R%,
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a0, z(; t, z,)) < . In the sequel we shall use the following lemma (for
the proof see [2], [3]).
LEMMA 1. Let FeZF,t,>= 0,2, R". Then x(-, ty, %) € 8(ty, Ty, F')
sf and only if
1° @(to; By #o) = @y,
2° for every T > 0 and each t,,1,€[0,T],1, <t,, we have
ty

@ (153 Loy @o) — (215 Loy Bo) € fF(s, x(83 to, wo))dsy
!

where the integral is mean in Aumann’s sense.

Now, let us introduce the following notation:

H(ty, xy, m) = {F eF: |F(t,2)l <m(t) for ae. t>0,xrecR"
and S(i,, ,, F) # 0},
‘where m ETq-g}', IE (2, @)l = h(F('), {0}), Q(to, @o, M) = F o N H (tg, Ty, M)
and
P(ty, By, M,y £) = {F € @ (1o, %o, M): d(07 (-5 1o, @o)) < 5]7

where x(; %y, o) € S(ty, Zo, F).

We shall need the following lemma:

LeMMA 2. H(t,, ®y, m) 18 a closed subset of F for each t,> 0, 2, R®
and m e Ly

T>0

Proof. For fixed ¢, > 0, z, € R* and m € ()& let {F,} be a sequence
T>0
in H(ty, @y, m) such that o(F,, F,)—0 as n—oco. By the completeness

of #, we have F,e#. It remains to show that F, e H (i, ©,, m). It is
not difficult to see that ||Fy(¢, z)|l, < m(t) for a.e. > 0 and # € R". Let
{x, (*; to, To)} be a sequence of trajectories of (1) corresponding to ' = F,.
Then 2, (2y; B, @o) = @y and &, (1; 8, @,) € F,, (t; 2, (¢; ¥y, 2,)) fora.e.t € [0, T]
and each 7 > 0.

By the definition of the metric g, from the convergence o(F,, F)—>0
as n—oo it follows that there exists a subsequence {F,.} of {F,} such that
lim b (F(t, z), Fo(t,x)) =0 for every T >0 and a.c. te[0,T], uni-

k—o0

formly with respect to « € R™ In virtue of Lemma 1, 1° for every T > 0
we obtain l
2
Zy(tss5 Loy @) — By (813 Loy Xp) € f Flc(s’ 2y (85 Lo, mo)) ds
|

for ¢,,2,€[0,7T],t,<t, and k4. Therefore
t2
@i (25 Ty %a) — @p (15 o, o) < [ m()dt
t
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Hence it follows that for any T > 0 there is a subsequence of {z,(-; t,, o)}
uniformly converging on [0, T'], call it again {z,(-; ¢, o)}. Let zy(-; o, Zo)
= lima,(-; £y, ;). Of course, we have z,(ty; ty, ;) = @,.

fe—

It is not difficult to see that we can further select a subsequence
of {®,(‘; to, @,)}, keeping notation {z,(-;1,, %)}, such that d(z,(-;1,, z,),
Zo(*5 Loy ©)) >0 as k—oo.

For every T > 0,k € #, and a.e. t € [0, T'] we have

ty
a([‘”o(tzi toy o) — Zo (115 tay Zo)], f Fo(sy %o(8; 2o, a’))ds) < o (25 2oy @) —
¢

T
~ @y (L35 Loy To) |+ 1o (P15 Loy @o) =@ (P15 Loy @o)ll + f h(Fk(t; Zr (25 Toy wo))r
0

T
Fo(tv @y (L5 o, mo)))dt+ f h(Fo(t; Xy (L5 o,y mo)): Fo(ta Zo(t, tomo)))dt
0

for t,,1, € [0, T] and ¢, < ¢,. Hence it follows that @,(¢; ¢, #,) € Fo(t, #,(t;
to, o)) for a.e. 1[0, T], T > 0;5i.e. 8(t, 2, Fo) #9.
In a similar way we obtain
LEMMA 3° 2(t,, Ty, m, €) 18 a closed subset of F for each e > 0,1,> 0,
zy € R and me (\ZLr.
Let T>0
R(ty, &, 0, m) = m P (loy Toy M)
TgeB(0,4)
and let W+ denote the set of all positive rational numbers. It is easy to
prove that for every ¢,> 0 and m € () £

>0

n Ug?(tcn e, 8, m) = m U R(ty, €, 6, m).
e>0 6>0 Wt oeWw+
Hence and by Lemma 2° we obtain:
THEOREM 1°. The set & of all F € F, for which the trivial solution
zp = 0 of (1) i¢s almost weakly stable is an F,, set in (F, o).
THEOREM 2°. The set f of all F € &, for which the trivial solution xy = 0
of (1) 78 almost weakly unstable is a G, s set in (F, p).
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