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Integral representations
for even positive definite functions

by A. FRIEDMAN * (Evanston, Ill.)

1. Statement of the results. We denote by z = (2, ..., )
a variable point in the real #-dimensional euclidean space R". A function
g(z) is said to be even if g(ayzy, ..., 6n&n) = g(2y, ..., &a) for all o; = +1.
We denote by O™ the set of all infinitely differentiable functions on R",
and by O7 the set of all functions in C™ having a compact support.
A continuous function f(z) on R" is called an even positive definite (e.p.d.)
function if f(x) is even and if for every even function ¢ in O,

(1) [ [ He—no@ey)dedy >0.
R* R

Let My = {25 =2+ 4y;; ;=0 or y; =0}, M =W, x... xMs. For
n = 1 Krein [13] proved that if f is e.p.d. then there exist positive
measures da,, do, such that

(2) f(w) = f cos (zt)do,(t)+ f cosh (xt) doy(t)
0 0
where [ do,(t) < co and do, is such that the second integral on the
[1]

right-hand side of (2) is convergent for all #. The measures do,, do, are
not unique, in general. (2) can also be written in the form

(2') J@) = [e=tda(t)

m

where do(t) is an even measure. 1t is not known whether such a repre-
sentation holds for all e.p.d. f, if » > 1. If however f is assumed to be
bounded by

(3) f(@) = O(ed**) for some a >0,

then the measures do,, do, are unique ([2], [3], [9], [14], [15], [16], [18]).
Furthermore, the existence and uniqueness of the representation (2’) is
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268 A. Friedman

then also known for n» > 1 (this was first proved by Vilenkin [17] who
extended to » >1 the proof, for n =1, of [9]).

More recently, Kostuchenko and Mityagin [12] developed Krein’s
method [13] and obtained integral representations for various classes
of positive definite generalized functions as well as even positive de-
finite generalized functions. Their method is different from that of [9],
[17] (who also considered representations of some generalized functions).

The main purpose of the present paper is to establish the existence
and uniqueness of the representation (2’) (for » > 1) under the following
assumption:

(4)  for each 1 < j < n, the function f(0, ...,0, 2y, 0, ..., 0) has at most
one integral representation (of the form (2)).

Thus, in particular, if for some a > 0
(4) f(0,..,0,%,0,..,0) = O(BXP(‘M’%)) G=1,..,mn)

then (2') is valid with a unique (positive) measure do.
For the sake of future references we state our main result in the
following theorem.

THEOREM 1. Let f(x) be a continuous even positive definite (e.p.d.)
Junction and assume that (4) holds. Then f(x) has a unique integral repre-
sentation of the form (2'), where do(l) is even and [ |¢|do(t) < oo

b

for all .

We shall also give a new proof to the effect that (4') implies (4),
namely we shall prove:

THEOREM 2. Let f(x) be a continuous e.p.d. function of one real var-
iable and assume that (3) holds. Then f(x) has a unique integral repre-
sentation of the form (2).

From Theorem 1 we obtain the following corollary.

CorOLLARY. If f(x) is an e.p.d. function satisfying (4') then f(x)
satisfies (3) (with another a).

Indeed, substituting ozx = 0 for all ¥ #4 into (2') and using (4'),
we get

f el do (t) = 0(e*),

oy

where MF = DY < oo x DGy X Dy X Mypg X oo X M, My = {27 = @5 + 153
zy; = 0}. Hence

If (z)] < f ”leixﬂng 2 fle'”f‘flda l) = (Zemf’ = O (enalzl®)

i=1 i=1 M i=1
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It is not known whether the existence part of Theorem 1 remains
true if the assumption (4) is omitted and » > 1. For an analogous prob-
lem of moments, Zarhina [19] gave an example where there is no
existence. Theorem 2 does not remain true if (3) is replaced by f(x)
= O(exp(alz|***)) for some &> 0; see [9], [12].

Our method of proving Theorem 1 is entirely different from both
the method of [9], [17] and the method of [13], [12]. It relies upon
a method of Devinatz [4], [5], [6], [7] which he developed in solving
some problems of moments and problems of extension of positive de-
finite functions. In particular, some of his arguments in [7] will be
closely followed. As will be indicated in § 8, some of the results of [12]
concerning representation of positive definite generalized functions can
also be proved by the present method.

The proof of Theorem 1 is given in §§ 2-6. Theorem 2 is proved
in § 7. In § 8, various extensions are indicated.

2. Reproducing kernels. A complex-valued function K(z,y)
defined on R™ xR" is called a positive definite kernel if for any finite set
of points 2* ¢« R* and complex numbers &,

D K(at, )5, > 0.

We associate with K a Hilbert space & which is the completion of the
linear set consisting of functions g(x) = )Y & K (x, #%) (finite sum), the
norm given by |lg|t = (g, g) = D, K (7, #*)&;E. K i called the reproducing
kernel of F since g(y) = (g(«), K (x,y)) holds for all geF, yeR". K is
uniquely determined by the last property and the requirement that,
for each y, K(x,y) belongs to ¥.

The theory of reproducing kernels was extensively studied by
Aronszajn [1]; for a summary of those properties that will be used later
on, see [7], pp. 112-113.

For simplicity of notation we shall henceforth restrict ourselves to
the case n = 2; the extension to » > 2 will be rather obvious. By appro-
ximating an even complex measure du(x) with a compaet support by
a sequence of even functions in C; we find that (1) holds also when
@ (x)dx is replaced by du(x). Taking measures concentrated at 4k points
@y (j=1,...,h; a =1,2,3,4), where

oy = (@1, ), Ty = (A, —m), @y =(—2,%), T =/(—ai,—a4)
and where u(xf,) = £, we find that
(5) Kz, y) =f@+y)+fle—y)+f@+§)+flz—9)

is a positive definite kermel; here ¥ = (¥,, —¥.) if ¥ = (¥1, ¥2)-

Annales Polonicl Mathematiel XVI Ip



270 A. Friedman

Conversely, if K (x, y)is a positive definite kernel then f(z) can easily
be shown to be an e.p.d. function.

Analogously, in the case n =1, f(zr) is e.p.d. if and only if
f(z+y)+f(x—y) is a positive definite kernel.

Let ¥ be the Hilbert space associated with the kernel (5), and let
F' be the linear set consisting of the functions g¢(z) =) &K (x, y*)
(finite sum). Note that the elements of ¥ are even continuous functions
on R For any t,7,7,0 in R? (r;7,0,0. # 0) set gux) = D &K (x,yk1),

Ta 1. @3 @
1

7.1%91926[.6{61.0}. Ger-drydrydt, dt, .

The integrand is a continuous function from (¢, ) into F. Since when-
ever gn—>0 in the F-norm also gm(z)—>0 uniformly for # in bounded
sets of R?, we conclude that §,,(x) is the value of the right-hand side
of (6) with ¢;4. replaced by gi+.(z).

Let D be the linear set spanned by all the §,, when ¢ varies in &'
and r, o vary in R? Since §,,—>g (in the F-norm) as r, o >0, D is dense
in F. Let A, be the operator

(6) gre =

2g(x
Ag(a) =29
T

its domain d(A4,) consists (by definition) of all ¢ € ¥ such that ég(x)/oz,,
9%g(x)/ox; exist and are continuous functions on R, and d°g/aa} belongs
to F. It is easily seen that A4, is a closed operator.

3. Preliminary lemmas. We shall prove several lemmas con-
cerning 4, and its adjoint Af.

Lemma 1. d(A,) is dense in F.

It follows that A} exists and A* = A,.

LEMMA 2. A} C A, and D C d(4}).

LEMMA 3. Let B, be the restriction of A? to D. Then the closure of B,
coincides with AY.

Lemma 1 follows by showing that for every §,,

b
7 o -r '

Te @z
; B
J ‘ (Gt orutttatrw — Graust tatewo — Goruttatraw + Gta+eavw] BT dly
17201024

where # = (1, 0), v = (0,1). The calculation is analogous to that in [7],
p. 115.
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To prove Lemma 2, we introduce

(8) %:r.e= jffJK( y Y+ t+1)dr, drydt, dt,

" "z 0103

where ¢(-) means the function whose value at each point z is g(z). Now,
if ged(A?Y) then

(Al.g, ?;l:r.o) = (g, Al?;l:f.e) .

Using (7) in evaluating Alﬁ;m and then using the reproducing property
of K we find, after taking g, >0, r,—>0,

(Atg, lim 71/;1'.0)
30,050

= ,r_;la[g(?l‘i'(rri‘ 91)“)_9(?/ +ru)—g(y + 91“)"‘9(?/)] .

Taking r, >0, ¢,—>0 and observing that the left-hand side has a limit,
namely, At¢g(y), and that this limit is a continuous function, we con-
clude that g(y) has continuous two derivatives with respect to ¥, and
&*g(y)loyi = Atg(y). Hence, Af C 4,.

In order to prove that DC d(A?r), it suffices to show that each
fuire belongs to d(A?). Let g e d(A4,). Then

M N1 @

ffJJ 2g(y+t+f)dfld‘tgdt1dt2

1730102

(Algif'l ’0) =

s 11 0 @

= lim —ffj f[g(y+(h+k)u+t—|—t)—

h0,k-0 R 7501 Qz

—g(y+hut-t+2)—g(y+ku+t+1)+ g(y+t+7)| drydrydty dt,
ra o f1a
. 1 "1 :
=,J.,’,§,‘lo(-"’r_‘—lr,ele,ofj mofoj [E() 9+ (h+k)u+t+7) —

—K(yy+hutit+r)—K(,y+kutt+z)+K(-, y+t+7)]d"1dt1dradtz) .

For fy(z) =f(®z—y) we have

10
ff (Fy+a+ brustrs— Fyvnuttee— Fyskuster + fyress) drydly
00
A k
= ff(fv+f+r+(rx+en)u_fv+t+-r+r|u_fy+t+t+mu+fy+t+t)d71dt1-
(L

19*
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Proceeding similarly with the other three terms of K(z,y) and then
taking h—>0, k-0, we find that

Tz @8

: f j [K(r ?/+(7'1+91)“+(t2+12))_

, —
1720102 B

(4,9, ?;/:r.o) = (9

—K(', ?/+Tlu+(ta+72)”) "K( HY+ 91“+(t2+72)”) +
+K( 9+ ("2+Tz)"’)]dt2dt2) .

Since the right-hand side is a continuous funectional of ¢ in the ¥ -topo-
logy, fyire € d(A1).

To prove Lemma 3, observe that the method by which it was
proved that AYC A, also yields BfC 4,. On the other hand, B,C At
implies Bf D At = A,. Hence Bf = A4, and, consequently, the closure
B* of B, coincides with A?f.

Let {rm}, {om} be two fixed sequences of positive numbers such
that 7, >0, pn—>0c0 a8 m—>o00. Set

Tm @m

1
(9) Uman = 2= | [ gueemnat

0 0

and let D, be the linear set spanned by the g,.,. as ¢ varies in .

LEMMA 4. The closure of the restriction of A} to D, coincides with
At and

1
19rmen = p [9crm +emine — Trmu— Jomut 9] -
m Om

The proof is obtained by slightly modifying the proof of Lemmas 1,
2, 3, replacing D vy D,.

We next introduce A4,, A3, etc., with respect to the variable ,.
Analogues of Lemmas 1-4 hold for 4,. We also have:

LEMMA 5. DCd(AFA$) ~ d(AEA}) and for any §r, e D,
(10) At A%g., = A% Atg:,
1
t17201 02

{[g(fl+01)1l-+(rz+ea)v — Jrireyurrw —

— G renu+ oo T Gim+evul— [Fryutretonw — Fryust rav — Fryutogw + Gru] —

— [Gorutratonw — Forutrav — Joru+ow + Jorul + [Gire e — Grav— Joo + 91} -

The proof of (10) is obtained by evaluating A2k as in the proof
of Lemma 1, where h = Alg,,.
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4. Formulas of integral representations. We first establish:

LEMMA 6. AY has a self-adjoint extension.

Indeed, since A7 is closed and symmetric it remains to show that
its deficiency indices are equal, or, equivalently, that the dimensions
of the eigenspaces of (Af)* = A; corresponding to the eigenvalues -+i
are the same. This however follows by noting that 4,9 = ig implies
A,§ = —1§.

Let H, be a self-adjoint extension of AY and let {E,(t)} be the
(unique) spectral family associated to Af (E,(t—O0)= E,(t)). For any
¢ >0, set B\, = H,(¢c)—E(—¢), Fi. = E,F. The operator

(11) Uyy,w)g(@) =2 [ coshly, V) AE(t)g(x)

is a bounded operator on each F,..
LEMMA 7. For any g € 5y,

(12) Ui(yiu)g(2) = g(@+yu)+g(@—y,u).
Proof. ge(\d(H"). Now, A'C H, implies A, — A}* C H = Hy;
m=1
hence, ¢ ¢ ﬂ d(AT). Thus, &"g(x)jexrs™ exists and = H'g(x). ¢ is more-

m=1
over an entire analytic function with respect to z,, with infinite radius
of convergence about each point x; indeed,

@ i e
‘—“’— — |HYg(@)| = |(ETg, K (-, o))| <|HIgIY K, 0) < gy, 0)
Fmtlg (x) Pmrig(yy, Ta) g (Y1 T) }
—mri | S consty max | —— === max |[—————

| =Iu:—z1|<1 oy e +|vl—-’t;|<1 oy

< const - ¢™.
We then get, from (11),

21".

&g (x)
(2 )' 19()—222 )'. aw‘im

=g@+ynu)t+g@—y,u).

Uy(y,0)g (o) = 2 2

Let H, be a self-adjoint extension of A} and let {F,(f)} be the spec-
tral family corresponding to H,. We say that H, and H, commute if

(13) Ey(t) Ey(ty) = Ex(t) Bu(t)  for all t, 1,.
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Assume that (13) holds and introduce E,, = E,(c)—E,(—c¢), E, = E\. E;,,
yc =Ec3'-. Then, i-f gegc,

(14) U(y)g(@) = Uy(thu) Uy(yav)g(2)
=g(@+yut+y0)+g(@+yu—y0)+g(z—yuty,0)+
+g(@— Yy u—Yyv),
where U,(y,?) is defined analogously to U,(y,u). We also have,
(16) (U(y)g,9) =4 [ [ coshiy, V%) cosh(y, V%) (B, (1) dEy(t) g, g) -

—c —c

Using (14), (15) for the special case g(z) = E.K (2, 0) and noting that
E.K (z,vy) is the reproducing kernel of the Hilbert space F., we get

(16) E.K(y,u+yav,0)+E.K(y,u—Yyyv,0)+E K(—y,u+y,v, 0)+

+EK(—yu—y;?,0) = f f cosh (y, /%) cosh (y,)/ T} dac(t)
where |

doc(t) = 4 (dEy(t,) dEy(t,) E. K (x, 0), B. K (z, 0))
= 4(dE\(t,) dE,y(t,) K (2, 0), K(z, 0))
= 64 (dE\(t,)dE,y(1,)f (x), f (x)) = 16da(1) .
As ¢—>oo, the left-hand side of (16) converges to
K(yu+ 930, 0)+K(y,u—y;0, 0) +-K(—y1%+ Y, 0)+
+E(—y,u—yav, 0) = 16/(y).

Since do(t) >0, by taking ¥, =0, ¢—>o0o we conclude from (16) that

000
ff cosh(y,]/t_,)da(t) < oo.
-0 0
Similarly, taking y, =0, ¢—>o00, we get
o 0
f fcosh(yll/'t_l)da(t) .
0 —

Finally, taking ¢—>oo, we find that also

f J‘COSh(yﬂ/ﬂ) cosh (?/zl/t—z)df’(t)< oo
0 o0



| O]
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and, furthermore,

(17) f)= [ [ cosh(y,)/t) cosh (ysy/H)do(2)
where -
(18) da(t) = 4(dE1(t1)dE2(ta)fy f) .
To see that (17) generalizes (2) to n =2, write
o- e JT] I4TT

Substituting, in each of the integrals, 7, = V|t|, s = V Ita|, We get
(19) f j 8 (911,) €8 (Ysts) doy (1) + f f co8 (¥, 1,) cosh (¥, t,) doy(t)+
0

+ff cosh (¥, 1) cos(yztz)da,(t)—l—ff cosh (y,t;) cosh (y,t,)da,(t) ,
0 0 0 0

where doj(t) are positive measures satisfying

fmf doy(t) < oo, fwfw cosh (ypt,) doy(t) < oo,
0 0 0 0

(20)
[ [ cosh(yti)doy(t) < oo, [ [ cosh(y,t,) cosh(yyts)doy(t) < oo

00 0

for all y., v, .

Formula (19) can also be written in the form (2’) where do(f) (now
different from the do given in (18)) is an even measure satisfying
mf! leiwt|do(t) < oo for all = e R2.

5. Criterion for uniqueness. We shall establish in this section
a useful criterion for uniqueness. It will be used both in completing
the proof of Theorem 1 in § 6 and in proving Theorem 2. In § 2 we
introduced &, A, in case n = 2. Similarly we now introduce these no-
tions for n =1. For n =1, K(2,y) =f(e+vy)+f(z—y).

LEMMA 8. A continuous e.p.d. function f(x) of one real wvariable
(t.e., n = 1) has a unique representation of the form (2) (with f day(t) < oo,
[ cosh(xt)doy(t) < oo for all z) if and only if A} is a self-adjoint op-
erator in &. .

Proof. Suppose f(r) has a unique representation and let H,, H,
be two self-adjoint extensions of AY. We need to prove H, = H,, or
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equivalently, F,(t) = F,(t) where {F,(t)}, {Fy(f)} are the spectral families
corresponding to H, and H, respectively. From the proof of (17), (18)
specialized to » =1 we obtain:

f(y) =2 [ cosh (y Vo) d(F(1)f,1) =2 [ cosh (y1/?) d(F0)F, 1) -

Hence, by the uniqueness assumption, d(Fy(t)f,f) = d(Fy(t)f,/). Next,
for any Borel set 4,

f cosh (yV/7) cosh (2)/1)d(Fy(1)f, f) = f cosh (yV/t)cosh (2 1) d(Fy(t)f, )
a4 a4
i.e.
(21) (Fy(4)Vy(2) K (z,0),Vi(y) K (2,0)) = (F(4)V,(2) K (2,0), Vy(y) K (x, 0))
where Vy(z) = 2 Tcosh (zy/1)dF;(1).
If 4 is contained in (—c¢, ¢) we may replace the V,(2) K (z, 0) in (21) by

F\.Vi(2)K (z, 0) = Vy(2) F'c K (z, 0)
=M. K(z+2,0)+F,.K(z—2,0) =2F,. K (x,?),

where Lemma 7 specialized to » = 1 has been used. Proceeding similarly
with Vi(y)K (2, 0), Vy(2)K(x,0), Vyy)K(z,0), (21) takes the form

(FI(A)K(w’ z), K(z, ?/)) = (Fz(A)K(.a"r z), K(=z, y)) y
from which it follows (as the K(z, y) span a linear set dense in ¥) that
F(A) = Fy(A), i.e., Fy(t) = F,(t) for all t.

Conversely, let A! be self-adjoint and suppose that f(x) can be
represented in the form

(22) f@) = [ coshlzyi)da(t).

We wish to prove that do(f) is uniquely determined. Let A, be the
linear subset of L2(do) consisting of all functions G(¢) satisfying

f cosh (z)/1) G (t)da(t) = 0.
Since, by (22),

(23) E(w,y) =f(a+y)+f(@—y) = 2 [ cosh(aV/1) cosh(yy?)do(t),
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we can apply Theorem 4 of [4] and conclude that there exists a unitary
mapping W between A, (the orthogonal complement of A4, in L*dos))
and ¥, given by

h(@)=V2 [ coshleV)H(t)do(t) (He AT, h = WH),

IbE = [ | H@)pdo(t) .

Let A, be the set of all functions H(f) such that H(!) e Ag,
tH (t) € Ay . Define an operator T on WA, by

Thiz) = V2 [ cosh(zy/)tH(t)da(1).

Clearly 4,k = Th; hence, TC A,. T is also easily seen to be closed and
symmetric.

It g = } & K (, y*) (finite sum) then for each of the functions Orm.om
defined in (9), the corresponding H (t) (which is calculated by using (23))
is bounded by [t]—'O(exp (a¥ M)) for all #; this can be verified by di-
rectly evaluating the two integrations in the expression for H (t). It fol-
lows that ¢r,em € d(T). By Lemma 4, then, Af C 7. Hence I'D A}
=(Af)*DT*D T, ie., AY =T.

Now, for any Borel set A4 and H e A7, set

B(d)h(@) = [ cosh(wyd)ys(t) H(t)do (1)

where y, is the characteristic function of A. The B(4) form a spectral
resolution of the identity and 2(B(A)f,j) = g(4) (since H(l) =1 if

h =V2f). Also,

(A%g, k) = (Tg,h) = [ d(B(t)g, h).

Thus, {B(t)} coincides with the spectral family {E(t)} of AT and, con-
sequently, do(t) = 2(E(t)f, f), i-e., do is uniquely determined.

The proof of the second part of Lemma 8 can easily be extended
to yield:

LEMMA 9. If f(x) is a conlinuous e.p.d. function and n = 2, and if
1, A3 are self-adjoint operators which commute with each other, then | has
a unique integral representation of the form (19) such that (20) holds.
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6. Completion of the proof. In view of Lemma 9, it remains
to prove:

LEMMA 10. Under the assumptions of Theorem 1, the operators AT, A}
are self-adjoint and commute with each other.

Proof. To prove that Al is self-adjoint in suffices to show that
the deficiency indices are zero, or equivalently, that if (AY)*g = g,
(A)*h= —ih then g =0, h = 0. Since A} = A, we have &%gfa} = ig.
For any fixed a3 the function g,(z,) = g(x,, #3) is a restriction of g()

to x, = o and therefore (see [1], p. 351) it belongs to the Hilbert space F*
associated with the kernel

Ko(@1, 91) = K@) Y)lya=za=e3 = 2/ 01+ Y1, 0) 4 2f (21—, 0) .

By our assumptions on f and by Lemma 8 it follows that A}, in F*,
is self-adjoint. Since, however, dg,/ds; = ig,, we must have gy(z,) = 0.
We have thus proved g(z) = 0. Similarly, &(z) = 0.

The proof that A2 is self-adjoint is similar. It thus remains to show
that AT commutes with A2, i.e., that (13) holds.

Let 1 be any imaginary number and let 2 = (A?—AI)D, I being
the identity operator. Denote by C, the restriction of A7 to 2. If we
prove that

(24) C3 =4,
then (13) follows easily. Indeed, we then conclude that C3* = 4§ = 4,,
i.e., the closure of C, is 4,. Hence, for any imaginary number u,
D = (A2 —ul)Q2 is dense in F. But in view of (10),
(A2 — pI)(AY—AD)g = (A} —AI)(AF —pul)g =h
for all ¢ e D. Hence, the resolvents R;; of A} satisfy
RuRzph = Rg,,Ruh

for all b ¢ ®. It follows that R;;R., = R,,R;;. (13) now follows by using
the formula '

A
1. [
E(1)h = 5. lim ] Jo (Rotis—Ry_ix)hdo,

where {F (1)} and R, are the spectral family and the resolvent of a self-
adjoint operator.

Proof of (24). For every g e d(C?)

(25) (C2g, (AT — AD)fyire) = (g, AS(AT —AD)fyirs) -
Setting

T2 02

(26) b = Girs+eyo— Jroo— oo + 9 — f f C2 Jitr+ e dradl,
o0
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and using (7), (10), we find that (25) is equivalent to

h(y + (r + e)w) —h(y +ru)— h(y + e1%) + h(y)

T o

1

1 2
= — m!! h(y+(t1+71)“)d"1d’1-

As r,—>0, 0,0 the right-hand side converges to —ih(y) which is
a continuous function. Hence, dh/dz,, &"hfor: exist and

&h -
aa:;) = _Th(z).

The most general solution of (27) which is an even function is

(27)

(28) ¢(w;) cosh (ux,) where ,u:l/——-i.

Since h e ¥, it is an even function and thus has the form (28), i.e.,

h(z) = h(wyv)cosh(uz;). Substituting h from (26) into the last relation
we obtain (taking 7, — 0, g, = 0)

(29) a"’; {9(@) — g (2,v) cosh (uz,)} = C2g(z) — cosh (ua;) CF g ().
2

Consider next the positive definite kernel
A(z,y) = K(z, y)+ Koz, y)

where Ko(z, y) = cosh(ur,)cosh (uy,)k(zy, Y2)y k(s ¥2) = 2/(0, 2z, + ¥2) +
2/(0, z,—y,). Let ¥, be the Hilbert space associated with Kz, y) and
let ¥4 be the Hilbert space associated with 4 (x, y). The elements of &,
have the form

w(x) = h(x)+ cosh(ux,)g(2,v) (h,geTF).

If w(z) =0 then, for any fixed s, = a3, h(w,,3) satisfies: dh/da}
= —Ah. Since h(w,, z3) is the restriction to z, = 23 of h(z, x,) which
belongs to F, it belongs to the Hilbert space ¥* associated with the
kernel

K (2, Y)lzs-pa=ay = 2/ (B1+ 91, 0)+2f (81—, 0) .

As f(z,,0) has a unique integral representation, A! is self-adjoint and,
consequently, h(w,,25) = 0. It follows that A(x) =0, g(z,v) =0. We
conclude (using [2], pp. 352-353) that F, =F @ F, (orthogonal sum).

Denote by A;, A;' the operator A, corresponding to F, is &,
respectively. Since f(0, z,) has a unique representation, A; is easily
seen to be self-adjoint; hence also 4,® A; is self-adjoint. Clearly,

(30) A, ©A4:C 45
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We next show that (4;')* is self-adjoint. It suffices to show: if
Ay'g = +ig then g = 0. Now for each fixed , =z, ¢ satisfies &°g/ox}
= +tig and it belongs to the Hilbert space associated with the kernel

A(@, Ploy-n=at = YE(@) Y)lar-y,-sf  Where  y = 14| cosh(ual)[* .

Since f(0, z,) has a unique representation, g(a{, ;) = 0.
Having proved that (A4;')* is self-adjoint it follows from (30) that

(31) A =4, @ 4.

Now, if g ed(C%) then (29) shows that g(x)— g(z,v)cosh(ux,) belongs to
d(As'). Hence, by (31), ged(A4,) and A,g = &g/ows = 0¥g. This com-
pletes the proof of (24).

7. Proo? of Theorem 2. In view of Lemma 8 it suffices to show
that AY is self-adjoint, i.e., if H,, H, are two self-adjoint extensions of
A? then H, = H,. Let {F\(t)}, {F,(t)} be the spectral families associated
with H, and H, respectively, and consider the functions

oi(@, 1) = [ eMAFD] mole)  (G=1,2).

Since Fyiro e D C d(A}),

[ eAdF () fy.r o) = Abs(z, 1) .

It follows that
ops(@, 1) _  Pla, 1)
ot ox?

(? =1, 2).
Also, ¢(x,0) = fm,,;,,‘.(a;) = @o(®,0). Using (3) we find that 7,,;.,.,9(9:)
= O(exp(ba?)) for some b > 0 and, consequently,

gi(@, t) = O () (i=1,2).

We can therefore employ a uniqueness theorem for the Cauchy problem
(see 8], p. 180) and conclude that ¢,(x,t) = @,(x, t). Thus, for any g ¢ F,

[ B D e ) = | PPN iner 9)

both integrals are absolutely convergent. From the uniqueness of the
Fourier transform it follows that

d(Fl(l)z,;r,g, g) = d(Fz(}*)Tv;r.m g) .

Since the linear space spanned by the f;,m is dense in F, dF (1) = dF,(2),
i.e‘, Hl - Hz.
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8. Further results. 8.1. Our proof of Theorems 1 and 2 can be
modified to yield a proof of Bochner’s theorem (which states that every
continunous positive definite function is the Fourier transform of a unique
positive measure). We now take A, = —i(9/ox,). In proving the analogue
of Theorem 2 we use a uniqueness theorem of the Cauchy problem for
hyperbolic equations (see [8], p. 181).

8.2. In [12] Kostuchenko and Mityagin obtained integral represen-
tations of positive definite generalized functions f (f is positive definite
(p.d.) if for every test function ¢ (f, ¢ * ¢*) > 0 where ¢*(x) = ¢(—2x)).
Even though the method of the present paper is valid only for conti-
nuous functions, one can proceed without difficulty to obtain repre-
sentations for various generalized functions (for instance, for distribu-
tions), by the following scheme:

If f is a p.d. generalized function and y a test function then
T =jf*y=x*yp* is a continuous p.d. function. But then our method yields

T(2) = [ e™doy,(2) .
We next observe that
da,(A)
do(A) = =~
°® = e
is independent of y, where p is the Fourier transform of y. Hence 7'(0)
= [ do,(2) takes the form

(32) (/ypxy*) = [ 1$(A)Pdo(2).
It follows that if ¢ is another test function then
(33) (f, pxv*) = | F(MNFD)do(2).

From (32) and the fact that f is bounded on some neighbourhood
of the origin of the test space one can obtain a bound on do(4). Next
one takes a sequence yp = yp—>d (6 = Dirac’s measure) in (33) and gets,
by justifying the passage to limit inside the integral, (f, ¢) = | %(4)da(4),
i.e., f is the Fourier transform of o. This scheme was accomplished in
several instances in [12]; see also [11]. The basic formulas (32), (33)
were derived in [12] by using a spectral theorem of Gelfand and Kostu-
chenko [10], [11].

Uniqueness of the representation for generalized funections can also
be inferred from uniqueness for continuous functions.

8.3. Remark 8.2 holds also for even positive definite generalized
functions.

8.4. If we define ¢*(#) = ¢(x) (# is n-dimensional) then the rela-
tion (f, ¢ x¢*) > 0 is equivalent (for continuous f) to

(34) Dt +angE >0,
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i.e., K(z,y) = f(z+y) is a positive definite kernel. We wish to obtain
a representation of the form

(35) f@) = [ etda(t).
Rn

If such a representation is valid, then f(x) can be extended into the
n-dimensional complex space as an entire function. Assuming that f is
such a function, we define

Uy(yyu) = [ entdBy(t)

where {E,(?)} is the spectral family corresponding to AY, and A,g is
defined by —i(ég/oz,). We find that

Uy, u)g (@) = g(@+ 1y, u) .

Proceeding similarly to the proofs of Theorems 1 and 2 and noting that
for n =1 A} is self-adjoint (without any assumption on f) we conclude
that there exists a unique representation of the form (335).

8.5. If f(x) is assumed to satisfy f(—x) = f(«) and if (1) holds for
all ¢ e C¢ satisfying ¢(—z) = ¢(z) then f(z+y)+f(x—y) is a positive
definite kernel. The proof of Theorem 1 can be modified and we then
find that, for » =2, f(z,, v,)+f(#, —¥,) has a representation

[ [ cosh(z,)/t,) cosh (y, ¥t} dey(t) .

—00 —00

There seems to be some difficulty in deriving a representation for
f(xyy ¥1)—f(2,, —¥,) which should be of the form

f f sinh (z,)/%,) sinh (y, )/ %,) dou(?) -

—00 —
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